期刊文献+

Residential Electricity Classification Method Based On Cloud Computing Platform and Random Forest 被引量:2

下载PDF
导出
摘要 With the rapid development and popularization of new-generation technologies such as cloud computing,big data,and artificial intelligence,the construction of smart grids has become more diversified.Accurate quick reading and classification of the electricity consumption of residential users can provide a more in-depth perception of the actual power consumption of residents,which is essential to ensure the normal operation of the power system,energy management and planning.Based on the distributed architecture of cloud computing,this paper designs an improved random forest residential electricity classification method.It uses the unique out-of-bag error of random forest and combines the Drosophila algorithm to optimize the internal parameters of the random forest,thereby improving the performance of the random forest algorithm.This method uses MapReduce to train an improved random forest model on the cloud computing platform,and then uses the trained model to analyze the residential electricity consumption data set,divides all residents into 5 categories,and verifies the effectiveness of the model through experiments and feasibility.
出处 《Computer Systems Science & Engineering》 SCIE EI 2021年第7期39-46,共8页 计算机系统科学与工程(英文)
基金 This work was partially supported by the National Natural Science Foundation of China(61876089).
  • 相关文献

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部