期刊文献+

RP-NBSR: A Novel Network Attack Detection Model Based on Machine Learning 被引量:2

下载PDF
导出
摘要 The rapid progress of the Internet has exposed networks to an increasednumber of threats. Intrusion detection technology can effectively protect networksecurity against malicious attacks. In this paper, we propose a ReliefF-P-NaiveBayes and softmax regression (RP-NBSR) model based on machine learningfor network attack detection to improve the false detection rate and F1 score ofunknown intrusion behavior. In the proposed model, the Pearson correlation coef-ficient is introduced to compensate for deficiencies in correlation analysis betweenfeatures by the ReliefF feature selection algorithm, and a ReliefF-Pearson correlation coefficient (ReliefF-P) algorithm is proposed. Then, the Relief-P algorithm isused to preprocess the UNSW-NB15 dataset to remove irrelevant features andobtain a new feature subset. Finally, naïve Bayes and softmax regression (NBSR)classifier is constructed by cascading the naïve Bayes classifier and softmaxregression classifier, and an attack detection model based on RP-NBSR is established. The experimental results on the UNSW-NB15 dataset show that the attackdetection model based on RP-NBSR has a lower false detection rate and higherF1 score than other detection models.
出处 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期121-133,共13页 计算机系统科学与工程(英文)
基金 supported by the National Natural Science Foundation of China(61300216,Wang,H,www.nsfc.gov.cn).
  • 相关文献

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部