期刊文献+

基于神经网络的燃气–超临界CO_(2)联合循环变工况特性快速预测及优化 被引量:1

Rapid Prediction and Optimization for Off-design Performance of Gas and Supercritical Carbon Dioxide Combined Cycle Based on Neural Network
下载PDF
导出
摘要 燃气–超临界CO_(2)联合循环清洁高效、结构紧凑,因系统部件中间容积较小,变负荷调节速率较高,具有良好的灵活性,通过其快速变负荷运行有利于大规模消纳可再生能源电量。该联合循环采用具有超–跨串级结构的超临界CO_(2)底循环实现燃机余热梯级利用。为解决其快速变负荷中循环特性快速预测及优化问题,该文提出基于面心立方设计和反向传播神经网络的变工况特性求解方法。采用粒子群优化算法确定该联合循环变负荷过程的最优滑压运行策略。结果表明:基于神经网络的循环变工况特性预测方法具有良好的精度,并有效缩短仿真计算时间。与流量比例调节法对比,最优滑压运行策略使循环变工况过程具有更优的循环效率及可行运行区间,可以快速准确地为燃气–超临界CO_(2)联合循环提供变工况运行参考。 The gas-supercritical CO_(2) combined cycle is clean and high-efficient,with a compact structure.As its components are of smaller volumes,the combined cycle has a stronger capability of rapid load change.As an accommodation source,it is a viable solution for large-scale accommodation of renewable energy by rapid load change.This combined cycle uses a supercritical CO_(2) cycle and a transcritical CO_(2) cycle to recover the exhaust heat from a gas turbine.To solve the issues of rapid prediction and optimization of off-design performance under rapid load change condition,this study proposes a solution procedure based on face-centered cubic design and back-propagation neural network.In terms of the particle swarm optimization algorithm,the optimal sliding pressure operation strategy is proposed.The results show the off-design performance prediction method is of a satisfied accuracy,and it can shorten the simulation time.Compared with the strategy of proportional mass flow rate operation,the optimal sliding pressure operation strategy has a higher efficiency and a wider operation range.It indicates that with this operation strategy the gas-supercritical CO_(2) combined cycle can have a better off-design performance.
作者 曹越 陈然璟 展君 陈祎璠 司风琪 CAO Yue;CHEN Ranjing;ZHAN Jun;CHEN Yifan;SI Fengqi(Key Laboratory of Energy Thermal Conversion and Control,Ministry of Education(Southeast University),Nanjing 210096,Jiangsu Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2023年第11期4178-4189,共12页 Proceedings of the CSEE
基金 国家自然科学基金项目(52206006) 江苏省基础研究计划(自然科学基金)青年基金项目(BK20210240)。
关键词 超临界CO_(2)循环 变工况特性 反向传播神经网络 快速预测 运行优化 supercritical CO_(2)cycle off-design performance back-propagation neural network rapid prediction operation optimization
  • 相关文献

参考文献4

二级参考文献24

  • 1DOUGLASC.MONTGOMERY.实验设计与分析[M].北京:中国统计出版社,1998.. 被引量:3
  • 2Richard,Verseput.Digging Into DOE:Selecting the Right Central Composite Design for Response Surface Methodology Applications[DB/OL].2000 QCI International,Http://www.qualitydigest.com.2004/11/7 被引量:1
  • 3Raymond,H.Myers,Douglas,C.Montgomery.Response Surface Methodology:Process and Produce Optimization Using Designed Experiments[C].New York:John Wiley & Sons,INC.280-318,1995 被引量:1
  • 4R.Myers,G.Vining."Variance Dispersion of Response Surface Designs,"[J].Journal of Quality Technology,1992(24):1-11 被引量:1
  • 5Box,G.E.P.,and Hunter,J.S."Multifactor Experimental Designs for Exploring Response Surfaces,"[J]The Annals of Mathematical Statistics,1957,28:195-241 被引量:1
  • 6Raymond H.Myers,André I,Khurl and Walter H.Carter,Jr[J].Response Surface Methodology:1966-1988.Technometrics,1989,31(2):137-153 被引量:1
  • 7Box,G.E.P.,Wilson,K.B."On the Experimental Attainment of Optimum Conditons,"[J]Journal of the Royal Statistical Society,Series B,1951,13,1-45 被引量:1
  • 8Box,G.E.P.,and Draper,N.R."A Basis for the Selection of a Response Surface Design,"[J]Journal of the American Statistical Association,1959,54.622-654 被引量:1
  • 9Box,G.E.P.,Draper,N.R."The Choice of a Second Order Rotatable Design,"[J]Biometrika,1963,50.335-352 被引量:1
  • 10A.Jeang.Optimal Tolerance Design by Response Surface Methodology[J].NT J.PROD.RES.,1999,37(14):3275-3288 被引量:1

共引文献65

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部