期刊文献+

Sharp Bounds on the A_(α)-index of Graphs in Terms of the Independence Number

原文传递
导出
摘要 Given a graph G,the adjacency matrix and degree diagonal matrix of G are denoted by A(G)and D(G),respectively.In 2017,Nikiforov~([24])proposed the A_(α)-matrix:A_α(G)=αD(G)+(1-α)A(G),whereα∈[0,1].The largest eigenvalue of this novel matrix is called the A_(α)-index of G.In this paper,we characterize the graphs with minimum A_(α)-index among n-vertex graphs with independence number i forα∈[0,1),where i=1,[n/2],[n/2],[n/2]+1,n-3,n-2,n-1,whereas for i=2 we consider the same problem forα∈[0,3/4].Furthermore,we determine the unique graph(resp.tree)on n vertices with given independence number having the maximum A_(α)-index withα∈[0,1),whereas for the n-vertex bipartite graphs with given independence number,we characterize the unique graph having the maximum A_α-index withα∈[1/2,1).
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第3期656-674,共19页 应用数学学报(英文版)
基金 the Undergraduate Innovation and Entrepreneurship Grant from Central China Normal University(Grant No.20210409037) by Industry-University-Research Innovation Funding of Chinese University(Grant No.2019ITA03033) by the National Natural Science Foundation of China(Grant Nos.12171190,11671164)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部