期刊文献+

物联网数据网关传感器节点适配度识别仿真 被引量:1

Simulation of Sensor Node Fitness Recognition for Data Gateway of Internet of Things
下载PDF
导出
摘要 目前的传感器节点适配度识别方法忽略了对传感网络全局节点的特性分析,计算出的适配度指标不准确,导致节点适配度识别可靠性差。为此研究新的物联网数据网关传感器节点适配度识别方法。分析传感器网络中节点的局部与全局等特性,选取并计算度中心指标、紧密度中心性指标、节点影响力指标以及网络适配度贡献指标等节点适配度识别指标,根据这些指标构建物联网数据网关传感器节点适配度识别模型,分析节点属性偏好信息,将节点作为主体构建决策矩阵,赋权节点属性,计算正理想节点和节点方案之间的贴近度,排序节点适配度。在MATLAB仿真平台上设计传感器网络仿真。实验结果验证了研究方法能够获得节点适配度的排序,并与其它方法相比具有较理想的可靠性。 The current methods for identifying the adaptability of sensor nodes neglect the analysis of the characteristics of the global nodes in the sensor network,resulting in inaccurate calculation of the fitness index and poor reliability of node fitness identification.Therefore,this paper presented a method of recognizing the sensor node fitness of IOT data gateway.This paper analyzed the local and global characteristics of nodes in sensor networks,selected and calculated the centrality index of compactness,node influence index and network adaptability contribution index.According to these indexes,we constructed a model to recognize the sensor node fitness of IOT data gateway,and analyzed the preference information on node attributes.Moreover,the nodes were regarded as the main body to construct the decision matrix,and then the attributes of nodes were weighted.Finally,we calculated the close degree between positive ideal point and node scheme and made a sequence of node fitness.The simulation of sensor network was designed on MATLAB plaform.Experimental results prove that the proposed method can obtain the order of node fitness.In addition,this method has better reliability than other methods.
作者 陶雁羽 刘佳祎 TAO Yan-yu;LIU Jia-yi(Network and Information Center,Guilin University of Technology,Guilin Guangxi 541004,China)
出处 《计算机仿真》 北大核心 2023年第5期430-433,524,共5页 Computer Simulation
关键词 物联网 数据网关 传感器 节点适配度 识别仿真 Internet of things(IOT) Data gateway Sensor Node fitness Recognition simulation
  • 相关文献

参考文献12

二级参考文献52

共引文献115

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部