摘要
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension.