摘要
A dual-switching spin crossover metal-organic framework(SCO-MOF)[Fe(TPB){Pt^(Ⅱ)(CN)_(4)}]·3iPrOH·4H_(2)O(TPB=1,2,4,5-tetra(pyridin-4-yl)benzene)is developed via the combination of redox-active framework and tunable guests.The reversible structural transformation between[Pt^(Ⅱ)(CN)_(4)]^(2-) and[Pt^(Ⅳ)Br_(2)(CN)_(4)]^(2-)moieties can be manipulated by redox post-synthetic modification(PSM),which results in the change of SCO behaviors from step-wise to one-step.The influences of the oxidative addition of bromides on the ligand field splitting of Fe side are further explored by density functional theory calculations.Besides,the modulation of hysteretic four-/three-step,one-step and four-step SCO behaviors can be achieved by tuning the composition of guest molecules.Therefore,the combination of electronic bistability,redox reaction and guest recognition in a homogeneous lattice provides a utility platform for designing multi-responsive molecule-based materials.
基金
supported by the National Key Research and Development Program of China(2018YFA0306001)
the National Natural Science Foundation of China(22075323)
the Pearl River Talent Plan of Guangdong(2017BT01C161)
the Guangdong Special Fund for Science and Technology Innovation Strategy(pdjh2023b0019)
the Guangdong University Student Innovation Training Project(202210386)。