期刊文献+

Development and application of wellbore heat transfer model considering variable mass flow 被引量:7

原文传递
导出
摘要 Dual-gradient drilling technology is being increasingly used in formations with narrow pressure margins.For dual-gradient drilling based on downhole separation,hollow spheres are separated into the annulus at the separator position,resulting in variable mass flow in the wellbore.Thus,existing heat transfer models are no longer suitable for describing wellbore temperature profiles in dual-gradient drilling.This study focused on developing a wellbore heat transfer model that fully considers separated hollow spheres entering the annulus,complex casing programs,and heat sources,for dual-gradient drilling based on downhole separation.The model was solved using an iterative method.Then,the accuracy of the model was verified using temperature data measured from two wells.Finally,the difference in the annular temperature distributions between dual-gradient drilling and conventional single-gradient drilling were investigated,as were the wellbore heat transfer characteristics for dual-gradient drilling.The following major conclusions were drawn:(1)for dualgradient drilling based on downhole separation,at the separator location,the annular fluid temperature does not decrease,but rather increase in the flow direction because of the inflow of hollow spheres;(2)a clear inflection point exists in the annular fluid temperature curve at the location where the separator would be;(3)the magnitude of the mutation of the temperature curve at the inflection point is considerably affected by the heat capacities of the hollow spheres and the pure drilling fluid;(4)under the same change in separation efficiency,distance between the bit and separator,flow rate,and thermal conductivity of formation,the variation range of the fluid temperature at the bottom hole is greater than that at the wellhead.
出处 《Underground Space》 SCIE EI 2021年第3期316-328,共13页 地下空间(英文)
基金 Project supported by the Key Program of National Natural Science Foundation of China(Project No.51734010) National Science and Technology Major Project(Project No.2017ZX05032-004).
  • 相关文献

同被引文献61

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部