期刊文献+

基于ARIMA模型的赤峰市流感样病例预测分析 被引量:9

Predictive Analysis of Influenza-like Cases in Chifeng Based on ARIMA Model
下载PDF
导出
摘要 目的建立赤峰市流感发病的自回归滑动平均混合模型(Autoregressive Integrated Moving Average,ARIMA),为该市流感的预防和控制提供参考依据。方法以2015年1月—2020年12月赤峰市疾病预防控制信息系统网络直报的流感样病例数为研究对象,利用Eviews 10.0进行单位根检验,使用SPSS 22.0进行数据分析以建立最佳预测模型,对发病趋势进行预测,并对模型残差进行白噪声检验。结果经过多次反复分析对照,最终建立ARIMA(2,1,1)(2,1,2)12为最优模型,R 2=0.718,MAPE=16.356,模型残差为白噪声序列(Ljung-Box Q=10.916,P=0.450),拟合值曲线较为靠近真实值,说明模型拟合能力较好。2021年上半年各月份赤峰市流感样病例发病例数预测值分别为50.12(95%CI:13.18~190.55)、17.38(95%CI:2.63~114.82)、19.95(95%CI:2.40~162.18)、14.79(95%CI:1.70~125.89)、12.02(95%CI:1.38~104.71)、4.68(95%CI:0.54~39.81)。结论赤峰市流感发病变化趋势在ARIMA(2,1,1)(2,1,2)12模型下能被较好预测,可用于流感样病例发病率的短期预测及流感发病的动态分析,对疫情防控的相应决策起到辅助作用。 Objective To establish an autoregressive integrated moving average(ARIMA)prediction model for the incidence of influenza in Chifeng to provide the reference basis for prevention and control measures.Methods The influenza-like cases directly reported by the Chifeng Disease Prevention and Control Information System from January 2015 to December 2020 were taken as the research object.With Eviews 10.0,the ADF unit root test was carried out.SPSS 22.0 was used to analyze data and establish the best ARIMA model.The white noise test was carried out on the model residuals and the trend of morbidity is predicted.Results After comparison and analysis for many times,the Multiple Seasonal ARIMA(2,1,1)(2,1,2)12 was finally identified as the optimal model.R 2=0.718,MAPE=16.356,and the residuals of the model were white noise(Ljung-Box Q=10.916,P=0.450).The fitted value was closer to the true value curve,which suggested that the model had a better fitting ability.The predicted number of influenza-like cases for the first half of 2021 was 50.12(95%CI:13.18-190.55),17.38(95%CI:2.63-114.82),19.95(95%CI:2.40-162.18),14.79(95%CI:1.70-125.89),12.02(95%CI:1.38-104.71),and 4.68(95%CI:0.54-39.81).Conclusion The Multiple Seasonal ARIMA(2,1,1)(2,1,2)12 can better predict the trend of influenza incidence in Chifeng City,and can be used for short-term prediction and dynamic analysis of influenza outbreaks to assist in corresponding epidemics decisions on prevention and control.
作者 唐琳 吕文丽 宝莉莉 刘海丽 贺向红 郑鸣昕 赵雪飞 赵健尧 TANG Lin;Lv Wenli;BAO Lili;LIU Haili;HE Xianghong;ZHENG Mingxin;ZHAO Xuefei;ZHAO Jianyao(Affiliated Hospital of Chifeng University,Chifeng,Inner Mongolia,024005,China;不详)
出处 《中国社会医学杂志》 2023年第3期350-354,共5页 Chinese Journal of Social Medicine
基金 赤峰市科研课题项目(2020-2021)。
关键词 流感 时间序列 ARIMA模型 预测 Influenza Time series ARIMA model Forecast
  • 相关文献

参考文献17

二级参考文献113

共引文献448

同被引文献119

引证文献9

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部