摘要
互联网中海量文本包含的情绪信息,表达着公众观点与态度,如何识别与利用情绪资源已成为各领域的研究焦点。通过梳理细粒度情绪识别相关理论与文献,从分类方法与应用场景两方面进行总结归纳,讨论情绪识别技术面临的挑战及实践缺口。通过分析发现,细粒度情绪识别主要有基于情绪词典、统计机器学习与神经网络学习的方法,且多应用于商务分析与舆情管理中。针对未来研究趋势,首先可对网络情绪词实时更新、领域词典构建及语义分析等技术展开研究;其次,如何提升训练数据分类自动化、打造半监督学习模型亟待深入探讨;此外,商务分析与舆情管理的研究,可开展对方面提取与情绪识别融合的探索。文中对情绪识别技术与应用的总结评述,有望为后续研究提供参考。
Emotional information contained in massive texts on the Internet expresses public views and attitudes.How to identify and utilize emotional resources has become the focus of research in various fields.By combing the relevant theories and literature on fine-grained emotion recognition,this paper summarizes the classification methods and application scenarios,and discusses the technical challenges and practical gaps.Through analysis,it is found that fine-grained emotion recognition methods mainly include emotion lexicon,traditional machine learning and neural network learning,which are mostly used in business analysis and public opinion management.In view of the future research trend,firstly,the real-time updating of online emotion words,domain lexicon construction and semantic analysis technology can be studied.Secondly,how to improve the automatic classification of training data and build a semi-supervised learning model need to be further discussed.In addition,the research of business analysis and public opinion management can explore the integration of aspect extraction and emotion recognition.This paper summarizes and comments on emotion recognition technology and its application,which can provide a reference for the subsequent research.
作者
王希雅
张宁
程馨
WANG Xiya;ZHANG Ning;CHENG Xin(School of Business,Qingdao University,Qingdao,Shandong 266000,China)
出处
《计算机科学》
CSCD
北大核心
2023年第S01期580-586,共7页
Computer Science
基金
山东省社科规划项目(18CHLJ22)。
关键词
细粒度情绪识别
情绪分类
情绪词典
机器学习
神经网络学习
Fine-grained emotion recognition
Emotion classification
Emotion lexicon
Machine learning
Neural network learning