摘要
提出甲醇重整制氢-膜分离提纯集成系统,以制取满足质子交换膜燃料电池要求的氢气。基于吉布斯自由能最小化法建立甲醇重整热力学分析模型,应用Aspen Plus在温度100-500℃、压力0.1-1 MPa、水醇摩尔比x(S/C)0.5-3的条件下,对甲醇水蒸气重整制氢工艺进行模拟,并对制氢膜分离系统进行[火用]分析和优化。模拟和优化结果表明:低温和过量水醇比有利于提高系统制氢产率并降低重整反应气中CO摩尔分数;相比压力,反应温度和进料水醇摩尔比对制氢反应影响更显著。集成膜分离的甲醇制氢系统最佳操作条件为:x(S/C)为1.2-1.8、温度150-250℃、压力0.2-0.5MPa。此外,开发低温高活性重整催化剂有助于减少CO的摩尔分数,提高系统能量利用效率。
A methanol reforming hydrogen production-membrane separation and purification integrated system was proposed to produce hydrogen that met the requirements of proton exchange membrane fuel cells.Based on the Gibbs free energy minimization method,a thermodynamic analysis model of methanol reforming was established,and Aspen Plus was used to analyze the steam reforming system of methanol under the conditions of 100-500℃,0.1-1 MPa,and water-methanol molar ratio x(S/C)0.5-3.The exergy analysis and optimization of the membrane separation system for hydrogen production were carried out.Simulation and optimization results show that low temperature and excess water-alcohol ratio are beneficial to increase the hydrogen production rate of the system and reduce the CO molar fraction in the reformed reaction gas.Compared with the pressure,the reaction temperature and feed water-alcohol ratio have more significant effects on the hydrogen production reaction.The optimal operating conditions of the methanol hydrogen production system with integrated membrane separation are x(S/C)1.2-1.8,150-250℃,0.2-0.5 MPa.In addition,the development of low-temperature high-activity reforming catalysts can reduce CO molar fraction and increase system energy efficiency.
作者
罗强
罗向龙
梁颖宗
陈健勇
杨智
何嘉诚
陈颖
LUO Qiang;LUO Xiang-long;LIANG Ying-zong;CHEN Jian-yong;YANG Zhi;HE Jia-cheng;CHEN Ying(School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,Guangdong Province,China)
出处
《化学工程》
CAS
CSCD
北大核心
2023年第6期50-55,共6页
Chemical Engineering(China)
基金
广东省科技计划项目(2021A0505030065)。