期刊文献+

多元α-预不变凸函数的Hermite-Hadamard型积分不等式 被引量:1

Integral Inequality of Hermite-Hadamard Type for Multivariate α-preinvex Functions
下载PDF
导出
摘要 论文研究了α-预不变凸函数的Hermite-Hadamard型积分不等式。利用Holder不等式、幂平均不等式和函数的α-预不变凸性,对此类广义凸函数的Hermite-Hadamard型积分不等式的左右两边分别给出估计值。借助多元α-预不变凸函数与单变量凸函数之间的关系,将此类函数的Hermite-Hadamard型不等式结果进行推广,得到了多元α-预不变凸函数的2个Hermite-Hadamard型积分不等式。 In this paper,we study the Hermite-Hadamard type inequality ofα-preinvex functions.Firstly,by using the Holder inequality,the power mean inequality and theα-preinvexity,we present the estimates of the left and right sides of integral inequality of the Hermite-Hadamard type for such generalized convex functions are presented respectively.Then,by using the relationship between multivariateα-preinvex functions and univariate convex functions,we obtain two inequalities of the Hermite-Hadamard type for functions with several variables.
作者 王海英 符祖峰 李婧 谭冰 WANG Haiying;FU Zufeng;LI Jing;TAN Bing(School of Mathematics and Statistics,Nanyang Normal University,Nanyang 473061,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2023年第2期246-251,共6页 Journal of Hubei Minzu University:Natural Science Edition
基金 国家自然科学基金项目(41876219) 南阳师范学院校级自然科学类科研项目(2022ZX022,2022QN014)。
关键词 α-预不变凸函数 Hermite-Hadamard型积分不等式 HOLDER不等式 幂平均不等式 单变量凸函数 α-preinvex function Hermite-Hadamard type inequality Holder inequality power mean inequality univariate convex function
  • 相关文献

参考文献1

二级参考文献14

  • 1WEIR T, MOND B. Prieinvex Functions in Multiple Objective Optimization [J]. Journal of Math Anal and Appl, 1988, 136:29 38. 被引量:1
  • 2WEIR T, JEYAKWMAR V. A Class of Nonconvex Functions and Mathematical Programming [J]. Bulletin of Austral ian Mathematical Society, 1988, 38(2): 177 189. 被引量:1
  • 3YANG X M, LID. Semistrictly Preinvex Functions [J]. Journal of Mathematical Analysis and Applications, 2001, 258.- 287-308. 被引量:1
  • 4NOOR M A, NOOR K I. Some Characterizations of Strongly Preinvex Functions [J]. Journal of Mathematical Analysis and Applications, 2006, 316(2): 697-706. 被引量:1
  • 5ROBERTS A W, VARBERG D E. Convex Functions [M]. New York: Acdemic Press, 1973. 被引量:1
  • 6YANG X M, LI D. On Properties of Preinvex Functions [J]. Journal of Mathematical Analysis and Applications, 2001, 256(1) : 229-241. 被引量:1
  • 7AVRIEL M, DIEWERT W E, SCHAIBLE S S, et al. Generalized Concavity [M]. New York: Penum Press, 1988. 被引量:1
  • 8YANG X M. Semistrictly Convex Functions [J]. Opsearch, BAZARAA M S, SHETTY C M. Nonlinear Programming Sons, 1979. 1994, 31(1): 15-27. 被引量:1
  • 9Theory and Algorithms EM. New York: John Wiley and NOOR M A. On Generalized Preinvex Functions and Monotonicities [J]. Journal of Inequality Pure Applied Mathemat ics, 2004, 5(4): 1-9. 被引量:1
  • 10LIU C P. Some Characterizations and Applications on Strongly a-preinvex and Strongly a-Invex Functions [J]. Journal of Industrial and Management Optimization, 2008, 4(4) : 727- 738. 被引量:1

共引文献9

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部