摘要
利用真空轧制复合工艺制备了N08367/Q345R超级奥氏体不锈钢复合板,分析了热轧、淬火和回火工艺下复合板组织演变及其对性能的影响规律.结果表明:复合板经热处理后,基材脱碳区明显增大;淬火状态下覆材侧由于C元素扩散导致χ相和晶间碳化物析出,亚稳态χ相回火后分解为更多晶间碳化物;界面Cr,Ni,Mo及C元素互扩散,形成明显的界面马氏体区.回火后界面残余应力降低,界面马氏体转变为回火马氏体.650℃回火条件下,界面发生新晶粒的形核、生长和再结晶,使界面形成与基体晶粒取向一致的共同晶粒.复合板界面剪切强度均超过350 MPa,650℃回火处理的复合板基材强度、塑性及韧性均可满足国标要求.
The N08367/Q345R super austenitic stainless steel clad plate was prepared in vacuum rolling cladding process,and the effects of hot-rolling,quenching and tempering processes on its microstructure and mechanical property were analyzed.The results show that the decarburization layers of the carbon steel substrate increased significantly after heat treatment.In quenching process,the diffusion of the C element led to the precipitations ofχphase and intergranular carbides,while the metastableχphase could be decomposed into more intergranular carbides after tempering process.An obvious interfacial martensite zone was formed by the interfacial diffusion of Cr,Ni,Mo and C elements.After tempering,the residual stress at the interface was reduced and the martensite at the interface was transformed into the tempered martensite.The nucleation,growth and recrystallization of new grains at the interface occurred at the 650℃tempering,resulting in the formation of grains with the same orientation as the grains of substrates at the interface.The interfacial shear strengths of all samples were above 350MPa.The strength,plasticity and toughness of the substrate material of the clad plate tempered at 650℃can meet national standard requirements.
作者
王明坤
骆宗安
曾周燏
谢广明
WANG Ming-kun;LUO Zong-an;ZENG Zhou-yu;XIE Guang-ming(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China;Research Institute of Nanjing Iron&Steel Co.,Ltd.,Nanjing 210035,China)
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第6期777-782,798,共7页
Journal of Northeastern University(Natural Science)
基金
国家重点研发计划项目(2018YFA0707300)
国家自然科学基金资助项目(52105322).
关键词
超级奥氏体不锈钢复合板
元素扩散
界面
组织转变
剪切强度
super austenitic stainless steel clad plate
element diffusion
interface
microstructure transformation
shear strength