期刊文献+

基于主题挖掘与情感分析的在线健康咨询评论研究 被引量:3

Research on Online Health Counseling Review Based on Topic Mining and Sentiment Analysis
下载PDF
导出
摘要 [目的/意义]在线健康社区提供的在线健康咨询服务作为患者获取健康信息的重要来源,已逐渐成为医学和情报学领域的研究热点,根据患者对在线健康咨询评价进行研究,有助于促进在线健康社区的快速发展和保障人们的健康生活。[方法/过程]以好大夫在线平台为例,用八爪鱼采集器采集9 514条小儿感冒患者评价评论数据,采用LDA主题模型得到评价的5个主题,根据情感词典的情感分析方法得到所有主题下的情感倾向分布,对消极评价较多的主题进行筛选,并分析产生消极评价的原因。[结果/结论]在线健康咨询评价主题可分为问题解答、表达感谢、治疗与效果、挂号预约、医术与医德,其中负面评价较多的是治疗与效果和医术与医德。研究结果可为医生改进和在线健康社区发展提供参考意义。 [Purpose/significance]As an important source for patients to obtain health information,online health consultation serv⁃ice provided by online health community has gradually become a research hotspot in the field of medicine and information science.Re⁃search based on patients’evaluation of online health consultation is helpful to promote the rapid development of online health community and ensure people􀆳s healthy life.[Method/process]Taking Haodafu online platform as an example,9514 evaluation and comment data of pediatric cold patients are collected by octopus collector,five topics are evaluated by LDA topic model,and the distribution of emotional tendency under all topics is obtained according to the sentiment analysis method of sentiment dictionary.The topics with more negative e⁃valuation are screened,and the causes of negative evaluation are analyzed.[Result/conclusion]The topics of online health consultation evaluation can be divided into question answering,expressing gratitude,treatment and effect,registration appointment,medical skill and medical ethics,among which more negative evaluation is treatment and effect and medical skill and medical ethics.The results of this study can provide reference for the improvement of doctors and the development of online health community.
作者 侯畅 李海晨 Hou Chang;Li Haichen(School of Information Management,Heilongjiang University,Heilongjiang Harbin 150080)
出处 《情报探索》 2023年第6期48-54,共7页 Information Research
关键词 在线健康社区 在线咨询 评价性评论 主题模型 情感分析 online health community online consultation evaluative comment topic model sentiment analysis
  • 相关文献

参考文献14

二级参考文献139

  • 1曹博林.互联网医疗:线上医患交流模式、效果及影响机制[J].深圳大学学报(人文社会科学版),2021(1):119-130. 被引量:51
  • 2侯少龙,赵政文.面向微博平台的产品市场分析模型研究[J].微型电脑应用,2011(4):4-6. 被引量:5
  • 3雷如桥,陈继祥.集群网络研究:一个社会网络理论的视角[J].经济问题探索,2004(12):130-131. 被引量:22
  • 4石晶,胡明,戴国忠.基于小世界模型的中文文本主题分析[J].中文信息学报,2007,21(3):69-75. 被引量:9
  • 5Allan J, Carbonell J, Doddington G, et al. Topic detection and tracking pilot study: Final report [ C ]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. San Francisco : Morgan Kaufmann, 1998. 被引量:1
  • 6赵旭剑.中文新闻话题动态演化及其关键技术研究[D].合肥:中国科学技术大学,2012. 被引量:4
  • 7Wang X, McCailum A. Topics over time : A non -Markov continuous time model of topical trends [ C ]//Proceedings of the ACM S1GKDD International Conference on Knowledge Discovery and Data Mining. New York :ACM Press,2006:424 - 433. 被引量:1
  • 8Blei D M,Lafferty J D. Dynamic topic models[ C]//Proceedings of the Annual International Conference on Machine Learning. New York : ACM Press ,2006 : 113 - 120. 被引量:1
  • 9Wang C,Blei D M, Heckerman D. Continuous time dynamic topic models [ C ]// Proceedings of the Conference on Uncertainty in Artificial Intelligence. Arlington : AUAI Press, 2008:579 - 588. 被引量:1
  • 10Ahmed A, Xing E P. Timeline : A dynamic hierarchical Dirichlet process model for recovering birth/death and evolution of topics in text stream [ C ]//Proceedings of the Conference on Uncertainty in Artificial Intellizence. Arlinmon, AUAI Press .2010,20 - 29. 被引量:1

共引文献307

同被引文献45

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部