期刊文献+

基于FDA不良反应报告系统的瑞德西韦药品不良反应信号分析

Signals of Adverse Reactions Induced by Remdesivir Based on FDA Adverse Events Reporting System
下载PDF
导出
摘要 目的基于美国食品药品监督管理局(FDA)不良反应报告系统(FAERS)数据库研究瑞德西韦在真实世界中的药品不良事件,为临床安全用药提供指导思路。方法提取FAERS数据库自2020年1月至2022年6月收到的ADE报告,分类统计分析,再提取出以瑞德西韦为首要怀疑药品的报告,采用比例失衡法中的ROR法进行数据挖掘,得到满足信号生成条件的药品不良反应信号,再进行排序和系统归类。结果与瑞德西韦有关的ADE共7846份;报告者大部分为医疗专业人士;来自美国的报告最多。挖掘后得到以瑞德西韦为首选药物的不良反应信号250个,5381份报告。主要集中在心脏、肝脏和肾脏系统。结论瑞德西韦临床应用中产生的不良反应信号涉及SOC系统较多,尤其是对心脏肝脏肾脏系统的影响较大,应特别注意对患者基础疾病的调查、肝肾功能的监测,以提高临床使用安全性。 Objective Based on the FDA adverse reaction reporting system(FAERS)database,the adverse drug events of remdesivir in the real world were studied to provide guidance for clinical safe drug use.Methods ADE reports received from FAERS database from January 2020 to June 2022 were extracted for classified statistical analysis,and then the reports with remdesivir as the primary suspect drugs were extracted.ROR method in proportion imbalance method was used for data mining to obtain ADR signals meeting the signal generation conditions,and then sorted and systematically classified.Results A total of 7846 ADE related to remdesivir;most of the reporters were medical professionals;the largest number of reports came from the United States.250 adverse reaction signals with remdesivir as the preferred drug were obtained,with 5381 reports.It is concentrated in the heart,liver and kidney system.Conclusion The adverse reaction signals generated by the clinical application of remdesivir involve many SOC systems,especially the impact on the heart,liver and kidney system.Special attention should be paid to the investigation of patients'underlying diseases and monitoring of liver and kidney function,so as to improve the safety of clinical use.
作者 刘肃 LIU Su(Guangzhou Center for ADR Monitoring,Guangzhou Guangdong 510160,China)
出处 《药品评价》 CAS 2023年第3期265-269,共5页 Drug Evaluation
基金 广州市市场监督管理局科技项目(2022kj33)。
关键词 瑞德西韦 药品不良反应事件(ADE) FDA不良反应报告系统 药品不良反应信号 Remdesivir Adverse drug reaction event(ADE) FDA adverse event reporting system Adverse drug reaction signal
  • 相关文献

参考文献2

二级参考文献13

  • 1Moore N, Thiessard F, Begaud B. The history of disproportional- ity measures (reporting odds ratio, proportional reporting rates) in spontaneous reporting of adverse drug reactions [J]. Phar- macoepidemiol Drug Saf, 2005, 14(4) : 285. 被引量:1
  • 2Rahul S, Amitava M. An urn model with applications to database performance evaluation [ J ]. Computers &Operations Research, 1997, 24(4) : 289. 被引量:1
  • 3Poluzzi E, Raschi E, Motola D,et al. De Ponti F. Antimicrobi- als and the risk of torsades de pointes : the contribution from data mining of the US FDA Adverse Event Reporting System [J]. Drug Saf, 2010, 33(4) : 303. 被引量:1
  • 4Woo E J, Ball R, Burwen DR,et al. Effects of stratification on da- ta mining in the us vaccine adverse event reporting system [J].DrugSaf, 2008, 31 (8) :667. 被引量:1
  • 5Manfred Hauben, Sebastian Horn , Lester Reich Potential. Use of Data-Mining Algorithms for the Detection of surprise Adverse Drug Reactions[J]. DrugSaf, 2007, 30 (2): 143. 被引量:1
  • 6Bate A, Lindquist M, Edwards IR,et al. A Bayesian neural net- work method for adverse drug reaction singal generation[J]. Eur J Clin Pharmacol, 1998,54 ( 4 ) : 315. 被引量:1
  • 7Man YP, Dukyong Y. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database [ J ]. Pharmacoepidemiol Drug Saf, 2011, 20 ( 6 ) :598. 被引量:1
  • 8Kim J, Kim M, Ha JH,et al. Signal detection of methylphenldate by comparing a spontaneous reportingdatabase with a claims data- base [ J ]. Regul Toxicol Pharmacol, 2011, 61 (2) : 154. 被引量:1
  • 9Hochberg AM, Hauben M, Pearson RK,et al. An evaluation of three signal-detection algorithms using a highly inclusive refer- ence event database[ J]. Drug Saf, 2009, 32 (6) :509. 被引量:1
  • 10Bate A. Bayesian confidence propagation neural network[J].Drug Saf, 2007, 30 (7) : 623. 被引量:1

共引文献635

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部