摘要
针对具有强非线性特点的机械臂覆盖控制问题,基于Voronoi图理论,提出了一种多机械臂系统的区域最优覆盖控制算法.首先,通过计算各个机械臂末端执行器的位置,将目标区域进行Voronoi划分;其次,根据凸优化理论,通过定义的描述区域覆盖控制效果的目标代价函数来衡量多机械臂系统关节以及末端执行器的移动是否最优;最后,结合机械臂系统特殊的动力学特性,给出了多机械臂系统的分布式区域最优覆盖控制器.利用Lyapunov稳定性理论对该算法进行了稳定性分析,数值仿真实验表明了算法的实际有效性,即所提算法可以使得多机械臂系统的末端执行器在代价函数值最小的情况下到达相应Voronoi区域质心并且速度渐近收敛到零,形成对目标区域的最优覆盖.特别地,该算法以机械臂为研究对象,丰富了现有的覆盖控制智能体模型研究,此外基于机械臂的非线性结构特性,算法中所设计的任务空间覆盖控制律,还可以应用到二阶系统智能体的覆盖控制研究中,拓宽了现有的基于一阶系统的覆盖控制研究.
Aiming at the coverage control problem of the manipulator with strong nonlinear characteristics,based on Voronoi diagram theory,a region optimal coverage control algorithm for multi-manipulator systems is proposed.Firstly,the target region is divided into Voronoi regions by calculating the position of the end effectors of each manipulator;Secondly,according to the convex optimization theory,the optimal movement of the joints and the end effectors of the multi-manipulator systems are measured by the defined objective cost function that describes the effect of area coverage control;Finally,combined with the special dynamic characteristics of the manipulator system,the distributed area optimal coverage controller of the multi-manipulator systems is given.The Lyapunov stability theory is used to analyze the stability of the algorithm.Numerical simulation experiments show that the algorithm is effective,that is,the proposed algorithm can make the end effectors of the multi-manipulator systems reach the corresponding Voronoi region centroids with the minimum cost function value,and the speed gradually converges to zero,forming the optimal coverage of the target region.In particular,the algorithm takes the manipulator as the research object,which enriches the existing research on the coverage control agent model.In addition,based on the nonlinear structural characteristics of the manipulator,the coverage control law of the task space designed in the algorithm can also be applied to the coverage control research of the second order system agent,expanding the existing coverage control research based on the first order system.
作者
韩俊贤
于晋伟
杨卫华
HAN Junxian;YU Jinwei;YANG Weihua(College of Mathematics,Taiyuan University of Technology,Jinzhong 030600,Shanxi,China)
出处
《微电子学与计算机》
2023年第6期62-69,共8页
Microelectronics & Computer
基金
山西省自然科学基金(20210302124546)。