期刊文献+

基于BP神经网络和支持向量机的心房颤动分类方法研究

An Atrial Fibrillation Classification Method Study Based on BP Neural Network and SVM
下载PDF
导出
摘要 心房颤动是一种常见的心律失常,其诊断受到多种因素的干扰,为在诊断上达到可应用性,使房颤自动分析水平提升至专家水平,对房颤的自动检测至关重要。该研究提出了一种基于BP神经网络和支持向量机的房颤自动检测算法。将MIT-BIH房颤数据库中的心电信号(ECG)片段分别分为10、32、64、128个心搏为一组,计算洛伦兹值、香农熵、K-S检验值和指数移动平均值这4种特征参数,将这4种参数作为SVM和BP神经网络的输入,进行分类和测试,以MIT-BIH房颤数据库中专家给定的标签作为参考输出。其中,使用MIT-BIH房颤数据库中用前18例数据作为训练集,后7例数据作为测试集。结果表明,在10个心搏分类上得到了92%的准确率,在后3种分类上得到了98%的准确率,灵敏度和特异性均在97.7%以上,具有一定的可应用性,后续将进一步在临床心电数据中进行验证和改进。 Atrial fibrillation is a common arrhythmia,and its diagnosis is interfered by many factors.In order to achieve applicability in diagnosis and improve the level of automatic analysis of atrial fibrillation to the level of experts,the automatic detection of atrial fibrillation is very important.This study proposes an automatic detection algorithm for atrial fibrillation based on BP neural network(back propagation network)and support vector machine(SVM).The electrocardiogram(ECG)segments in the MITBIH atrial fibrillation database are divided into 10,32,64,and 128 heartbeats,respectively,and the Lorentz value,Shannon entropy,K-S test value and exponential moving average value are calculated.These four characteristic parameters are used as the input of SVM and BP neural network for classification and testing,and the label given by experts in the MIT-BIH atrial fibrillation database is used as the reference output.Among them,the use of atrial fibrillation in the MIT-BIH database,the first 18 cases of data are used as the training set,and the last 7 cases of data are used as the test set.The results show that the accuracy rate of 92%is obtained in the classification of 10 heartbeats,and the accuracy rate of 98%is obtained in the latter three categories.The sensitivity and specificity are both above 97.7%,which has certain applicability.Further validation and improvement in clinical ECG data will be done in next study.
作者 刘晨沁 林高藏 周晶晶 叶继伦 张旭 LIU Chenqin;LIN Gaozang;ZHOU Jingjing;YE Jilun;ZHANG Xu(School of Biomedical Engineering,Health Science Center,Shenzhen University,Shenzhen,518060;Shenzhen Key Lab for Biomedical Engineering,Shenzhen,518060;Guangdong Key Lab for Biomedical Measurements and Ultrasound Imaging,Shenzhen,518060;Guangdong BIOLIGHT Innovation Research Institute,Zhuhai,519080)
出处 《中国医疗器械杂志》 2023年第3期258-263,共6页 Chinese Journal of Medical Instrumentation
基金 深圳市科创委重点项目(20210713091811038) 珠海市政府人才基金(2120004000207)。
关键词 洛伦兹值 香农熵 K-S检验值 指数移动平均值 BP神经网络 Lorentz value Shannon entropy K-S test value exponential moving average value BP neural network
  • 相关文献

参考文献4

  • 1陈志博,李健,李智,彭韵陶,高兴姣.基于RR间期和多特征值的房颤自动检测分类[J].生物医学工程学杂志,2018,35(4):550-556. 被引量:9
  • 2冯冠宇..心电图中房扑和房颤检测算法设计[D].东南大学,2018:
  • 3黄超..动态心电图中房颤自动检测算法研究及其临床应用[D].浙江大学,2013:
  • 4孟丹阳..基于心电信号的房颤自动识别研究[D].天津理工大学,2019:

二级参考文献2

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部