期刊文献+

基于组合模型的股指价格短期预测 被引量:1

Short-term Forecasting of Stock Index Price Based on Hybrid Model
下载PDF
导出
摘要 由于股票市场是一个复杂的、非线性的动态系统,单一预测模型不足以完全解释股指数据中所包含的信息,为避免单一模型在预测过程中的误差累积,采用一种结合改进的经验模态分解算法及粒子群算法优化的极限学习机的组合模型用于股指价格的短期预测。首先,向原始数据注入高频谐波后进行经验模态分解,以减缓模态混叠现象;然后,利用粒子群优化后的极限学习机对分解出来的各分量进行预测,加总各分量的预测值获取股指价格的预测值。基于上证指数等国内外四组股指数据的实证分析表明,该组合模型能有效把握股指数据的变化规律,具有较好的预测效果。 With the rapid development of the social economy,the environmental economy is increasingly complex.Stocks,gold,and other financial product trading all have captured the attention of more and more investors.The market behaviors cover all information,and have a high degree of randomness and volatility,so investing stocks becomes a high risk,high return of economic behavior.As one of the main markets,China’s stock market plays a key role in the global financial market.The accurate prediction of the stock index not only attracts the attention of investors and many scholars but also has great significance to the government regulatory authorities.At present,the study of the stock index price prediction method has achieved a lot of research results,mainly including the time series analysis method,machine learning,deep learning,and reinforcement learning algorithm.These methods have had a good effect on the stock index prediction.However,the stock market is a complex and nonlinear dynamic system,so the above single prediction model is powerless to explain the information contained in stock index data.Before predicting the stock price,it is necessary to stabilize it to ensure that the prediction model can obtain better prediction accuracy.Traditional stabilization algorithms,such as the differential method,cause the loss of information about the original data.In consideration of this problem,some scholars have used the multi-scale decomposition algorithm to stabilize the stock index price,and achieved good results.To avoid error accumulation in the single model forecasting process,this paper adopts a hybrid model combining the improved empirical mode decomposition algorithm(HF-EMD)and the extreme learning machine(ELM)optimized by the particle swarm algorithm(PSO)for the short-term prediction of stock index price.Firstly,in terms of data preprocessing,this paper adds the high-frequency harmonic signal to improve EMD.Under the aid of high-frequency harmonic,the extracted signal component is more stable,effectively reducin
作者 关永锋 喻敏 GUAN Yongfeng;YU Min(Hubei Province Key Laboratory of Systems Science in Metallurgical Process,Wuhan University of Science and Technology,Wuhan 430081,China;College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2023年第4期177-183,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(51877161) 湖北省教育厅科研计划指导项目(2018006)~~。
关键词 经验模态分解 模态混叠 极限学习机 粒子群优化 股价预测 EMD mode mixing ELM PSO stock price forecast
  • 相关文献

参考文献12

二级参考文献110

共引文献269

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部