期刊文献+

基于岭回归的河西走廊中部日光温室低温预测模型 被引量:5

Prediction Model of Minimum Temperature Inside Solar Greenhouse in Central Hexi Corridor Based on Ridge Regression
下载PDF
导出
摘要 为了构建基于气象要素的甘肃省甘州区日光温室低温预测模型,探索应用了岭回归分析的方法。在合理选取预测因子的基础上,对预测因子之间存在的多重共线性进行诊断,为了克服预测因子共线性对模型稳定性的影响,选择岭回归分析的方法进行共线性的处理和模型构建,应用模型的预测值与实测值对模型的精度进行检验。结果表明:选取的预测因子之间存在共线性问题,通过岭回归分析建立的日光低温预测模型可以克服预测因子间由于共线性问题对模型参数造成的影响,模型预测值与实测值之间的绝对误差(≤3℃)的准确率为98.4%,决定系数(R2)为0.8543和均方根误差(RMSE)为0.7849℃,模型精度较好。基于岭回归分析法建立的日光温室低温预测模型能够对当地日光温室低温进行合理而有效的预测。 The minimum temperature prediction model inside solar greenhouse in Ganzhou of Gansu Province was established based on meteorological elements by using ridge regression analysis.The multicollinearity of predictors was diagnosed through statistic test on the basis of reasonable selecting predictors,the ridge regression analysis was used to get over the influence of multicollinearity on the model stability,and the accuracy of the prediction model was tested by comparing simulated values and measured values.The results showed that collinearity existed among the predictors,and the prediction model of the minimum temperature inside solar greenhouse based on ridge regression could overcome the influence of collinearity on the model parameters.Between the simulated values and measured values,the accuracy rate of the absolute error(≤3℃)was 98.4%,the coefficient of determination(R2)was 0.8543,the root mean square error(RMSE)was 0.7849℃,and the accuracy of the prediction model was high.The minimum temperature prediction model based on ridge regression could reasonably and effectively predict the minimum temperature inside the local solar greenhouse.
作者 白青华 殷雪莲 王静 张洁 褚超 李学军 BAI Qinghua;YIN Xuelian;WANG Jing;ZHANG Jie;CHU Chao;LI Xuejun(Zhangye Meteorological Bureau of Gansu Province,Zhangye 734000,Gansu,China;Zhangye National Climate Observatory,Zhangye 734000,Gansu,China)
出处 《农学学报》 2023年第5期96-100,共5页 Journal of Agriculture
基金 甘肃省科技计划项目“张掖现代丝路寒旱农业气象服务技术研究”(20JR10RG823)。
关键词 日光温室 低温 岭回归 预测模型 solar greenhouse minimum temperature ridge regression prediction model
  • 相关文献

参考文献17

二级参考文献198

共引文献364

同被引文献56

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部