摘要
从人脸特征中剔除年龄相关特征,获得纯粹的身份特征,是实现跨年龄人脸识别的重要手段;然而,主流的身份特征提取方法忽略了对身份-年龄共享特征的处理,导致提取到的身份特征不完整。为此,提出引入身份-年龄共享特征的新方法,将混合人脸特征解耦为纯年龄相关特征、纯身份相关特征以及身份-年龄共享特征,然后将纯身份相关特征和身份-年龄共享特征进行多维耦合,从而得到完整的身份特征,有效提高跨年龄人脸识别的准确率。在人脸老化基准数据集Age-DB30上本文方法的识别准确率达到了97.07%,在LFW数据集上达到了99.73%的识别准确率,证明了所提方法的有效性与先进性。
Removing age-related features from face features to obtain pure identity features is an important means to achieve cross-age face recognition.However,the mainstream identity feature extraction methods ignore the processing of identity-age sharing features,resulting in incomplete extracted identity features.To this end,a new method of introducing identity-age sharing features was proposed,decoupling mixed face features into pure age-related features,pure identity-related features and identity-age sharing features,and then multi-dimensional coupling of pure identity-related features and identity-age sharing features to obtain complete identity features and effectively improving the accuracy of cross-age face recognition.The proposed method achieved a recognition accuracy of 97.07%on the face aging benchmark dataset Age-DB30 and 99.73%on the LFW dataset,demonstrating the effectiveness and advancedness of the proposed method.
作者
张子康
殷松峰
曹良才
刘成
ZHANG Zikang;YIN Songfeng;CAO Liangcai;LIU Cheng(School of Electronic and Information Engineering,Anhui Jianzhu University,Hefei 230601,China;Hefei Institute for Public Safety Research,Tsinghua University,Hefei 230601,China;State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument,Beijing 100084,China)
出处
《应用光学》
CAS
北大核心
2023年第3期565-570,共6页
Journal of Applied Optics
基金
安徽省重点研究与开发计划项目(202004d07020006)。
关键词
人脸识别
年龄不变
变换
典型相关分析
face recognition
age invariant
transformation
canonical correlation analysis