摘要
网格化空气质量监测仪(简称微型站)利用内部集成的电化学气体传感器检测NO2、SO_(2)、CO和O_(3)等空气污染物,具有成本低、体积小等优点,但电化学传感器自身存在的气体交叉干扰问题极大地影响了监测结果的准确性。通过一元、多元线性和多元非线性回归分析的方法研究了微型站内的4种传感器的交叉干扰模型。结果表明:NO_(2)、CO传感器符合一元线性模型,拟合优度(R^(2)值)分别为0.9778和0.9898;而多元线性模型更适用于O_(3)和SO_(2)传感器,R^(2)值分别为0.9773和0.8901。在此基础上,通过进一步引入气体浓度交叉项进行优化,可以使SO2传感器的R2值提升至0.9294。气体交叉干扰模型的建立和优化有助于提高微型站对空气污染物的监测能力,同时为厂家设计和改良仪器提供参考。
The grid air quality monitors(referred to as miniature stations)detect the air pollutants such as NO_(2),SO_(2),CO and O_(3)using the electrochemical gas sensors integrated into the devices,which have the advantages of low cost and small size,but the gas cross-interference of the electrochemical sensors has a serious impact on the accuracy of the testing results.The cross-interference models of four kinds of sensors in the miniature stations were studied by the methods of simple and multiple linear regression analysis and multiple nonlinear regression analysis.The results show that the NO_(2)and CO sensors conform to the simple linear models,and the goodness of fit(R^(2)value)is 0.9778 and 0.9898 respectively.The multiple linear models are more suitable for O_(3)and SO_(2)sensors,with R^(2)values of 0.9773 and 0.8901 respectively.On this basis,the R^(2)value of SO_(2)sensor can be improved to 0.9294 by further introducing the cross terms of gas concentration for optimization.The establishment and optimization of gas cross-interference models are not only helpful to improve the performance of miniature monitoring station to air pollutants,but also can provide reference for manufacturers to design and improve their instruments.
作者
闫续
张国城
沈上圯
冯端
杨振琪
董谋
赵红达
YAN Xu;ZHANG Guo-cheng;SHEN Shang-yi;FENG Duan;YANG Zhen-qi;DONG Mou;ZHAO Hong-da(Beijing Institute of Metrology,National Quality Supervision and Inspection Center for Eco-environmental Products,Beijing 100029,China;Department of Physics,Beijing Normal University,Beijing 100091,China)
出处
《仪表技术与传感器》
CSCD
北大核心
2023年第4期36-41,共6页
Instrument Technique and Sensor
基金
北京市科委“首都蓝天行动培育”项目(Z181100005418010)。