摘要
为了研究Ti-Zr微合金钢轧制变形过程中变形温度和Zr含量对内部应力应变的分布及奥氏体组织演变的影响,通过热模拟实验和金相分析获得3种不同Zr含量的Ti微合金钢应力应变曲线及奥氏体的晶粒尺寸及分布情况。研究结果表明:变形温度的升高会降低3种实验钢的内部应力,促进应力均匀分布,其中0.12Ti-0.02Zr钢应力下降的最明显,Zr的加入会促进Ti微合金钢再结晶奥氏体的形核和形变诱导析出相的析出,形变储能消耗量增大,不容易在变形过程中积累应力和应变;但过多的Zr会因为大量析出相而使实验钢的变形抗力增大,导致应力和应变累积。综合考虑,使用Ti-Zr复合微合金化技术实现奥氏体组织的超细化均匀时,Zr元素的添加量应控制在0.02%左右。
In order to study the effect of deformation temperature and Zr content on the distribution of internal stress and strain and the microstructure evolution of austenite in Ti-Zr microalloyed steel during rolling deformation,the stress-strain curves and the grain size and distribution of austenite in three Ti microalloyed steels with different Zr contents were obtained by thermal simulation experiment and metallographic analysis.The results show that:deformation temperatures can reduce internal stress of three experimental steel,promote stress uniform distribution,and 0.12 Ti0.02-Zr steel stress decreases most obviously.The addition of Zr will promote recrystallization nucleation of austenite of Ti microalloyed steel and precipitation of deformation induced precipitation of precipitated phase.Also,it increases the consumption of energy storage,so it is not easy to accumulate stress and strain in the process of deformation;however,excessive Zr will increase the deformation resistance of the experimental steel due to the large amount of precipitated phase,resulting in the accumulation of stress and strain.Overall consideration,when Ti-Zr composite microalloying technology is used to achieve the ultra-refinement and uniformity of austenite structure,the addition amount of Zr element should be controlled at about 0.02 wt.%.
作者
张凡林
郝天赐
曹建春
罗瀚宇
高鹏
杨银辉
ZHANG Fanlin;HAO Tianci;CAO Jianchun;LUO Hanyu;GAO Peng;YANG Yinhui(School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China)
出处
《钢铁研究学报》
CAS
CSCD
北大核心
2023年第4期425-433,共9页
Journal of Iron and Steel Research
基金
国家自然科学基金资助项目(51761019)。
关键词
TI微合金钢
ZR含量
应力应变
有限元
奥氏体组织
Ti microallyed steel
Zr content
stress-strain
finite element
austenite microstructure