期刊文献+

风电机组叶片故障仿真与状态判别研究 被引量:4

RESEARCH ON FAULT SIMULATION AND STATE JUDGMENT OF WIND TURBINE BLADES
下载PDF
导出
摘要 该文利用Bladed软件模拟叶片覆冰和破损故障,通过对比和分析风电机组叶片故障与正常时的运行数据,发现叶片故障状态时的机组运行参数变化特征;然后利用叶片振动信号,基于叶片工作模态分析理论识别出叶片模态参数,根据模态参数的变化揭示了两种故障对叶片振动影响的区别;最后将所识别的叶片模态参数与风电机组的运行参数组成多源数据,采用LightGBM框架下的分类决策树算法实现了对叶片故障状态的有效判断和识别。 Blade icing and damage faults were simulated by the software Bladed in this paper.By comparing and analyzing the operation data of wind turbine under blades normal and fault conditions,the change characteristics of operation data under the condition of blade failure was found.Then,the blade vibration signals were used to identify the blade modal parameters based on the blade operational modal analysis theory.According to the variation of blade modal parameters,the fault difference between blade icing and damage on blade vibration was revealed.Finally,the identified blade modal parameters and wind turbine operation parameters are combined into multi-source data.The classification decision tree algorithm under the framework of LightGBM(Light Gradient Boosting Machine)is used to identify the blade fault state effectively.
作者 高峰 张鸿 许琳 刘俊承 Gao Feng;Zhang Hong;Xu Lin;Liu Juncheng(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第4期52-59,共8页 Acta Energiae Solaris Sinica
基金 国家重点研发计划(2020YFB1506600,2020YFB1506604)。
关键词 风力发电机组叶片 损伤检测 故障分析 学习算法 覆冰 LightGBM wind turbine blade damage detection failure analysis learning algorithms icing LightGBM
  • 相关文献

参考文献1

二级参考文献8

共引文献13

同被引文献58

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部