摘要
设计11类背包问题的实验教学案例,建立相应的数学模型,然后利用1stOpt编程进行求解。结果表明:建立的通用数学模型正确,设计的实例合理,利用1stOpt编写的背包求解程序有效。与其他软件或解决背包问题的传统算法相比,1stOpt不仅通用可靠,编程简单,具有较快的收敛速度,而且具有良好的全局寻优和多解获取能力。基于1stOpt的编程不仅可快速有效地解决背包问题,对解决运筹学、数据结构与算法分析和数学建模等相关问题以及相应的教学都具有十分重要的借鉴意义,而且能提高学生的学习兴趣,增强学生的实践能力,达到学以致用的目的。
In this paper,eleven kinds of experimental teaching cases of knapsack problem were designed,the corresponding mathematical models were established,and then 1stOpt programming was employed to solve it.The study shows that the general mathematical model established in this paper is correct and the knapsack solver written by 1stOpt is effective,the designed examples are reasonable.Compared with other softwares or traditional algorithms to solve knapsack problems,1stOpt is not only univers al and reliable,but also has fast convergence speed.At the same time,it has good global optimization and multi-solution acquisition ability.Based on 1stOpt programming can not only solve the knapsack problem quickly and effectively,but also have very important reference significance to solve the related problems such as operational research,data structure and algorithm analysis and mathematical modeling,as well as the corresponding practical teaching.At the same time,it can improve students’interest in learning,enhance their practical ability,and achieve the aim that put what we’ve learned to use.
作者
陈恒杰
张家伟
薛善增
CHEN Hengjie;ZHANG Jiawei;XUE Shanzeng
出处
《中国教育技术装备》
2022年第12期133-140,共8页
China Educational Technology & Equipment
基金
重庆市自然科学基金面上项目“燃烧场中双原子分子的振转光谱与温度效应研究”(cstc2019jcyjmsxmX0147)
重庆市自然科学基金面上项目“高能对撞机上大横动量重味强子产生研究”(cstc2021jcyjmsxmX0681)
重庆科技学院本科教育教学改革项目“基于‘雨课堂’的《大学物理》混合式教学模式探索与研究”(201973)。
关键词
1stOpt
背包问题
数学模型
数学建模
1stOpt
knapsack problem
mathematical model
mathematical modeling