期刊文献+

对流层大气折射率BP模型的建立与精度分析

Establishment and Accuracy Analysis of BP Neural for Troposphere Atmospheric Refractivity
下载PDF
导出
摘要 以中国境内96个探空站2016~2018年1887313组数据为训练集、2019年635337组数据为测试集,建立3种基于BP神经网络的大气干、湿折射率模型,并与指数、ITU-R指数、双指数、Hopfield模型进行对比分析。结果表明,充分顾及折射率的各类可能影响因素、以地表气象信息及待定点空间位置为输入参数的BP模型效果最佳。与指数、ITU-R指数、双指数、Hopfield模型相比,最佳BP模型总折射率的RMSE分别降低69.8%、33.1%、31.9%和16.8%。BP模型在整体精度上优于传统模型,在地理空间和纵向剖面上的误差分布也更加均匀。 From the observation data of 96 sounding stations in China,we use 1887313 sets of data from 2016 to 2018 as the training set,and 635337 sets of data in 2019 as the test set.We conduct the comparison test with the exponential,ITU-R exponential,dual-exponential and Hopfield models.The results show that the BP model,which takes the surface meteorological information and the spatial location of the fixed point as input features,achieves the best effect by fully taking into account the various possible influencing factors of the refractivity.Compared with the exponential,ITU-R exponential,double exponential and Hopfield models,the RMSE of the best BP model is decreased by 69.8%,33.1%,31.9%and 16.8%,respectively.The BP model not only outperforms the traditional models in overall accuracy,but also has a more uniform distribution of errors in geospatial and longitudinal profiles.
作者 郑耀航 章迪 ZHENG Yaohang;ZHANG Di(School of Geodesy and Geomatics,Wuhan University,129 Luoyu Road,Wuhan 430079,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2023年第6期600-605,共6页 Journal of Geodesy and Geodynamics
基金 湖北省自然科学基金(2022CFB090) 武汉大学实验技术项目(WHU-2021-SYJS-15) 测绘遥感信息工程国家重点实验室专项科研经费(LIESMARS2022010) 国家自然科学基金(41604019) 湖北省大学生创新创业训练计划(S202110486161)。
关键词 大气折射率 BP神经网络 探空站 atmospheric refractivity BP neural network sounding station
  • 相关文献

参考文献8

二级参考文献52

  • 1刘利生.外测数据事后处理[M].北京:国防工业出版社,2002.. 被引量:10
  • 2刘晓阳,毛节泰,李成才,王美华.大气水汽总量的垂直分解[J].高原气象,2007,26(3):453-459. 被引量:6
  • 3Dodson A H, Chen W, Baker H C. Assessment of EGNOS Tropospheric Correction Model[J]. Jour- nal of Navigation, 2001, 54(1) :37-55. 被引量:1
  • 4Marini J W. Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile [J]. Radio Science, 1972, 7(2) :223-231. 被引量:1
  • 5Niell A E. Global Mapping Functions for the Atmos- pheric Delay at Radio Wavelengths[J]. Journal of" Ge- ophysics Research, 1996, 101(B2):3 227-3 246. 被引量:1
  • 6Boehm J, Werl B, Schuh H. Troposphere Mapping Functions for GPS and Very Long Baseline Interfer- ometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research : Solid Earth, 2006, 111 ( B2 ): B02406, doi: 10. 1029/ 2005JB003629. 被引量:1
  • 7Boehm J, Niell A, Tregoning P. The Global Map- ping Function GMF: A New Eempirical Mapping Function Based on Numerical Weather Model Data [J]. Geophysical Research Letters, 2006, 33 (7) : 199-208. 被引量:1
  • 8Saha K, Rajun C S, Parameswaran K. A New Hy- drostatic Mapping Function for Tropospheric Delay Estimation[J]. Journal of Atmospheric and Solar- Terrestrial Physics, 2010, 72(1):125-134. 被引量:1
  • 9Gegout P, Biancale R, Soudarin L. Adaptive Map- ping Functions to the Azimuthal Anisotropy of the Neutral Atmosphere [J]. Journal of Geodesy, 2011, 85(10) :661-677. 被引量:1
  • 10Tuka A, Mowafy A E. Performance Evaluation of Different Troposphere Delay Models and Mapping Functions[J] Measurement, 2013, 46(2):928-937. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部