摘要
为实现轧辊磨损的精准预测,建立了基于Archard公式和轧制基本理论的工作辊磨损预测模型,使用ABAQUS建立了轧制过程中轧辊-工件热力耦合模型,在此基础上,系统分析了压下率、轧制速度、轧件宽度及支撑辊对工作辊接触应力和磨损的影响规律,并使用现场实测数据验证了模型的有效性。结果表明,随着压下率的增加,接触应力和磨损显著增大。轧制速度的增加基本不改变接触应力的分布情况,但会引起相对滑动速度增大,导致工作辊磨损增加。工件宽度影响磨损的轴向分布,随着轧件宽度的增加,接触应力和磨损减小。轧辊与轧件产生的磨损为辊间磨损的30倍以上。通过与某厂1580 mm产线实际数据对比,计算磨损值与实测数据吻合良好,模型平均预测误差为3.85%,实现了轧制过程工作辊磨损的高精度预测。
To achieve accurate prediction of roll wear,the prediction model of work roll wear was established based on Archard formula and basic rolling theory,and thermal-mechanical coupling model of roll-workpiece in the rolling process was established by ABAQUS.On the basis,the influence laws of reduction ratio,rolling speed,workpiece width,and backup roll on contact stress and wear of work roll were analyzed,and the validity of the model was verified by the actual data on field.The results show that with the increase of the reduc-tion rate,the contact stress and wear increase significantly.The increase of rolling speed does not change the contact stress distribution,but can cause the increase of relative sliding speed,which leads to the increase of the work roll wear.Workpiece width affects the axial distribution of wear,and with the increase of workpiece width,the contact stress and wear decrease.The wear between roll and workpiece is more than 30 times of the wear between roll gap.By comparing with the actual data of a 1580 mm production line,the calculated wear values are in good agreement with the actual data,and the average prediction error of the model is 3.85%,which realizes the high preci-sion prediction of work roll wear during rolling process.
作者
彭文
孙佳楠
李旭东
龚殿尧
孙翼洲
孙杰
张殿华
PENG Wen;SUN Jia-nan;LI Xu-dong;GONG Dian-yao;SUN Yi-zhou;SUN Jie;ZHANG Dian-hua(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China;Shougang Research Institute of Technology,Beijing 100043,China;Institute for Frontier Technologies of Low-Carbon Steelmaking,Northeastern University,Shenyang 110819,China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2023年第5期214-225,共12页
Journal of Plasticity Engineering
基金
国家自然科学基金资助项目(U21A20117
52074085)。