摘要
SAR图像由于其主动成像的特点,不可避免的存在相干斑噪声,噪声的存在让SAR图像的后续解译处理变得较为复杂,为了便于SAR图像的解译处理和广泛应用,改进了一种基于CNN的斑点噪声抑制算法,使用Inception结构和扩张卷积来增大网络的感受野,使用非对称卷积组取代传统对称卷积来增强网络的特征提取能力,同时引入跳跃结构进行残差学习,将仿真数据输入网络,学习干净图像和噪声图像之间的映射关系,使用常用的评价指标对网络进行评估并与其它的噪声抑制算法进行对比,实验结果表明,改进的算法具有较好的去噪效果,对比其它去噪算法,上述方法不仅可以有效去除斑点噪声,并且能够较好的保留纹理信息。
The existence of noise makes the subsequent decompression processing of SAR images more complicated.In order to facilitate the decompression processing and wide application of SAR images,this paper improves a CNN-based speckle noise suppression algorithm.The Inception structure and dilation convolution were used to increase the perceptual field of the network.The asymmetric convolution group was used to replace the traditional symmetric convolution to enhance the feature extraction ability of the network,and at the same time,the jump structure was introduced for residual learning,the simulation data was input into the network,the mapping relationship between clean and noisy images was learned,and the network was evaluated using common evaluation metrics and compared with other noise suppression algorithms.The experimental results show that the improved algorithm in this paper has a better denoising effect,and compared with other denoising algorithms,the above method can not only effectively remove speckle noise,but also can retain better texture information.
作者
冯博迪
杨海涛
张长弓
高宇歌
FENG Bo-di;YANG Hai-tao;ZHANG Chang-gong;GAO Yu-ge(School of Space Information,Space Engineering University,Beijing 101416,China)
出处
《计算机仿真》
北大核心
2023年第4期5-10,37,共7页
Computer Simulation
关键词
图像去噪
卷积神经网络
残差学习
Image denoising
Convolutional neural network
Residual learning