摘要
由于出租车行业普遍存在轮班制,一条出租车的营运轨迹并不完全是一位出租司机的运营轨迹,因此,采用单一的出租车轨迹数据源无法深入分析出租车司机个体及群体的移动行为特征。卫星导航定位系统和地面移动通讯网络,均可对道路移动目标进行跟踪定位,形成不同质量的时空轨迹数据源,多源数据给出租司机移动行为分析提供了一种新的思路。提出一种面向出租车司机的多源时空轨迹的同轨分析建模方法,集成上述两类数据,增强轨迹语义,并利用提出的多源轨迹之间的时空相似度度量指标,对出租车GNSS(global navigation satellite system)轨迹数据和手机Cell-ID数据进行关联分析与同质性检验建模,重建“出租车-司机-手机”关联关系并探测出租车司机出车、收车的时空位置。采用2016年8月4日采集的北京市出租车GNSS轨迹和移动手机信令数据开展验证实验,结果表明:1)本文方法可有效识别“出租车-司机-手机”的关联关系,其中,基于GNSS轨迹与Cell-ID轨迹匹配的“车辆-手机”关联识别精度F1分数为0.91,基于Cell-ID轨迹聚类的“手机-出租车”关联识别精度F1分数为0.94;2)同一出租车的轮班司机的交接间隔时长呈伽马分布,平均1.5 h左右,交接位置的平均间隔距离约91 m,出租车司机交接班点沿交通枢纽呈现空间聚集现象。本文结果与人工解译结果具有高度的一致性,验证了本文方法的有效性。
Due to the shifts among partner taxi drivers,a taxi GNSS(global navigation satellite system)trajectory is usually not a driver’s operational trajectory,and thus it is impossible to deeply analyze the mobile behavior characteristics of individuals or community with a single GNSS data source.Both a satellite navigation and positioning system and a ground mobile communication network can track and locate the moving objects on the road,forming the spatio-temporal trajectory data sources of different qualities.In this paper,we propose a novel synchronized trajectory analysis for multi-source temporal and spatial trajectories of taxi drivers,integrating the above two kinds of data to enhance trajectory semantics and extract taxi driver travel space.Based on the track of the points accumulated weighted similarity of similarity metrics,in which the spatial association analysis and homogeneity test analysis were carried out between a taxi GNSS trajectory and a mobile Cell-ID trajectory and correspondingly the association of“taxi-driver-cellphone”was reconstructed and the space-time position of the taxi driver’s start-of-work and end-of-work was detected.The taxi GNSS data of Beijing Taxi and the mobile signaling data of Beijing Mobile collected on August 4,2016 were used for experimental analysis.The statistical results show that the F 1 score of identifying cellphone Cell-ID trajectories by matching a GNSS trajectory is 0.91,and the F 1 score of recognizing cellphone user by clustering analysis is 0.94.The averaged time and space difference between drivers during their shifting a taxi are 1.5 h and 91 m respectively.Moreover,the handover points of taxi drivers are densely distributed nearby transportation hubs.The modeling results are highly consistent with the manually interpreted ones,well verifying the effectiveness of the proposed method.
作者
王卫锋
胡靖昊
贺琰
宋现锋
芮小平
刘军利
朱克忞
WANG Weifeng;HU Jinghao;HE Yan;SONG Xianfeng;RUI Xiaoping;LIU Junli;ZHU Kemin(College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China;School of Earth Sciences and Engineering,Hohai University,Nanjing 210098,China;Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China)
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2023年第3期313-321,共9页
Journal of University of Chinese Academy of Sciences
基金
国家重点研发计划(2017YFB0503702,2020YFC1807103)
国家自然科学基金(40771167,41601486)资助。