摘要
针对网络流量预测问题,提出一种基于SARIMA和LSTM组合模型的网络流量预测方法。首先,利用S-HESD算法对异常流量数据进行检测,并通过滑动窗口均值进行数据平滑处理;然后,利用基于统计学习的SARIMA模型预测流量数据,并将其作为LSTM神经网络的输入,最终输出流量预测值。实验结果表明,SARIMA-LSTM组合模型能充分呈现骨干网、城域网、边缘接入网等不同层级网络的周期性和趋势性等特点,优于SARIMA、LSTM等单一模型。
出处
《江苏通信》
2023年第2期87-91,共5页
Jiangsu Communication