期刊文献+

一种融合位置特征的方面级情感分析方法

An Aspect-level Sentiment Analysis Method with Location Features
下载PDF
导出
摘要 方面级情感分析是如今情感分析领域的重要研究任务之一,旨在计算文本中多个方面词的情感极性。现有的方面级情感分析方法通常将整个句子直接输入复杂的神经网络,尽管此类方法能够有效捕捉到词与词之间的依赖关系,却忽略了方面词与其上下文之间所隐含的位置特征。因此,提出了一种融合位置特征的方面级情感分析方法。将文本分别采用基于方面词间隔的上下文划分方式与基于单词距离的上下文划分方式,通过两个微调后的BERT模型,完成词向量的表达;将两种词向量送入多头注意力机制,计算其文本特征;使用平均池化将语义信息进行融合,在输出层完成方面词的情感极性分类。在SemEval2014 Task4数据集和Twitter数据集上的实验表明,提出的融合位置特征的方面级情感分析方法能够充分利用方面词上下文之间的位置特征,有效提升了准确率和F1值。 Aspect-level sentiment analysis is one of the important research tasks in the field of sentiment analysis,aiming at calculating the sentiment polarity of various aspect words in the text.The existing aspect-level sentiment analysis methods usually input the whole sentence directly into complex neural networks.Although this kind of method can effectively capture the dependency between words,it ignores the implicit location features between aspect words and its contexts.Therefore,we propose an aspect-level sentiment analysis method with location features.The aspect words and their contexts are divided into context based on aspect word interval and context based on word distance,respectively,and the expression of word vectors is completed by two fine-tuned BERT models.Two kinds of word vectors are sent into the multi-head attention mechanism,and their text features are calculated.Average pooling is used to fuse semantic information,and the emotional polarity classification of aspect words is completed at the output level.Experiments on SemEval2014 Task4 data set and Twitter data set show that the proposed aspect-level sentiment analysis method with location features can make full use of the location features between the contexts of aspect words,and effectively improve the accuracy and F1-Measure.
作者 翟社平 成大宝 张文晴 刘园彪 ZHAI She-ping;CHENG Da-bao;ZHANG Wen-qing;LIU Yuan-biao(School of Computer Science&Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《计算机技术与发展》 2023年第5期167-172,共6页 Computer Technology and Development
基金 工业和信息化部通信软科学项目(2018R26) 陕西省重点研发计划项目(2022GY-038) 国家级大学生创新创业训练计划项目(202111664004)。
关键词 方面级情感分析 位置特征 注意力机制 BERT 深度学习 aspect-level sentiment analysis location features attention mechanism BERT deep learning
  • 相关文献

参考文献4

二级参考文献78

  • 1王家乾,龚子寒,薛云,庞士冠,古东宏.基于混合多头注意力和胶囊网络的特定目标情感分析[J].中文信息学报,2020(5):100-110. 被引量:9
  • 2赵军,许洪波,黄萱菁,谭松波,刘康,张奇.中文倾向性分析评测技术报告[C]//第一届中文倾向性分析评测会议(The First Chinese Opinion Analysis Evaluation).COAE,2008. 被引量:13
  • 3姚天昉,娄德成.汉语情感词语义倾向判别的研究[C]//中国计算技术与语言问题研究-第七届中文信息处理国际会议论文集,武汉:2007. 被引量:4
  • 4ACL 2006 Workshop on Sentiment and Subjectivity in Text[DB/OL], http://www, aclweb, org/anthology- new/W/W06/# 0300, 2006. 被引量:1
  • 5M. Ganapathibhotla, B. Liu. Mining Opinions in Comparative Sentences[C]//Proceedings of the 22nd International Conference on Computational Linguistics(Coling-2008), Manchester, 18-22 August, 2008. 被引量:1
  • 6S. Somasundaran, J. Wiebe, Josef Ruppenhofer (2008) Discourse Level Opinion Interpretation [C]// Coling, Manchester, 18-22 August, 2008. 被引量:1
  • 7M. Hu, B. Liu. Mining and summarizing customer reviews[C]//KDD '04 Proceedings of the tenth ACM SIGKDD international conference on Knowledge dis-covery and data mining. 2004. 被引量:1
  • 8Xuanjing Huang, W. Bruce Croft. A unified relevance model for opinion retrieval[C]//The 18th ACM Inter- national Conference on Information and KnowledgeManagement (CIKM) ,2009. 被引量:1
  • 9N. Jindal, B. Liu. Review spare detection[C]//WWW 07 Proceedings of the 16th international conference on World Wide Web, 2007. 被引量:1
  • 10Theresa Ann Wilson. Fine-grained Subjectivity and Sentiment Analysis: Recognizing the Intensity, Polari- ty, and Attitudes of Private States[D]. Ph. D Disser-tation, University of Pittsburgh, 2008. 被引量:1

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部