期刊文献+

基于Faster-RCNN的昆虫小目标检测研究

Research on Insect Small Object Detection Based on Faster-RCNN
下载PDF
导出
摘要 小目标检测算法通常难以达到理想的检测精度.为此,在分析常规算法基础之上对Faster-RCNN算法网络结构进行修改,得到了面向小目标的多尺度区域神经网络检测算法,该方法是利用高层特征和低层特征相互弥补的方法提升小目标的检测精度.实验结果表明,通过利用高层特征和低层特征有针对性地对图像进行信息提取,能有效提高小目标检测的准确度. Small object detection algorithm is often difficult to achieve the desired detection accuracy. For this reason,the Faster-RCNN algorithm network structure is modified based on the analysis of conventional algorithms,and a multi-scale area neural network detection algorithm for small targets is obtained. This method uses high-level features and low-level features to complement each other to improve small targets The detection accuracy. Experimental results show that by using high-level features and low-level features to extract information from images in a targeted manner,the accuracy of small target detection can be effectively improved.
作者 易星 YI Xing(College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China)
出处 《喀什大学学报》 2021年第3期65-69,共5页 Journal of Kashi University
关键词 Faster-RCNN算法 小目标检测 深度学习 多尺度检测 Faster-RCNN algorithm small object detection deep learning multi-scale detection
  • 相关文献

参考文献8

二级参考文献14

  • 1吴胜和,李文克.多点地质统计学——理论、应用与展望[J].古地理学报,2005,7(1):137-144. 被引量:126
  • 2张修军,郭霞,金心宇.带标记矫正的二值图象连通域像素标记算法[J].中国图象图形学报(A辑),2003,8(2):198-202. 被引量:44
  • 3谌海新,李智勇,沈振康,李吉成.长波红外导引头空间自动目标识别系统(一)[J].红外与激光工程,1996,25(3):2-10. 被引量:3
  • 4Journel A. Geostatistics for conditional simulation of ore bodies [J]. Economic Geology, 1974, 69(5) : 673-687. 被引量:1
  • 5Zhang T F. Filter-based training pattern classification for spatial pattern simulation [D]. Stanford, California: Stanford University, 2006. 被引量:1
  • 6Liu Y H. Using the Snesim program for multiple-point statistical simulation [J]. Computers & Geoseiences, 2006, 32(10): 1544-1563. 被引量:1
  • 7Haldorsen H, Lake L. A new approach to shale management in field-scale models [J]. Journal of Petroleum Science and Engineering, 1984, 24(4): 447-457. 被引量:1
  • 8Strebelle S, Journel A. Reservoir modeling using multiplepoint statistics [EB/OL]. [2008-07-21]. http://www. searehanddiscovery, net/documents/abstracts/annual2002/HTML/ 0751/images/076. 被引量:1
  • 9Strebelle S. Sequential simulation drawing structures from training images [D]. Stanford, California: Stanford University, 2000. 被引量:1
  • 10Journel A. Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses [J]. Mathematical Geology, 2002, 34(5): 573-596. 被引量:1

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部