期刊文献+

具有状态约束的机械臂切换自适应控制 被引量:1

Adaptive Control of Manipulator Switching with State Constraints
下载PDF
导出
摘要 为了解决具有状态约束的机械臂的控制问题,本文针对一类具有全状态约束和状态不完全可测的切换严格反馈非线性系统进行研究,通过引入状态观测器、自适应神经网络和动态表面控制技术,设计了一种基于径向基函数(RBF)神经网络的自适应输出反馈控制方法。利用Lyapunov方法和平均驻留时间理论(ADT)保证了闭环系统所有信号是半全局一致最终有界的(SGUUB),通过数值例子仿真验证了所提方法的有效性。最后将该方法应用于带电机驱动的机械臂并进行仿真实验,仿真结果表明,机械臂轨迹跟踪误差很小,有着良好的控制精度,同时也表明所提出的控制算法能够应用于实际工程模型。 In order to control manipulator switching with state constraints,this paper studies a class of strict-feedback nonlinear switching systems with full state constraints and incompletely measurable states.By introducing state observer,adaptive neural network and dynamic surface control technique,an adaptive output feedback control method based on the radial basis function(RBF)neural network is designed.The Lyapunov method and the average dwell time theory(ADT)are used to ensure that all signals in the closed-loop system are uniformly ultimately bounded.Numerical examples show the effectiveness of the semi-globally proposed method.Finally,the mechanical arm with motor drive is simulated,and the simulation results show that the trajectory tracking error of the manipulator is very small and has good control accuracy and that the proposed control method can be applied to actual engineering models.
作者 万敏 杨山山 WAN Min;YANG Shanshan(College of Mechanical and Electrical Engineering,Southwest Petroleum University,Chengdu 610000,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第4期597-607,共11页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51875489)。
关键词 动态面控制 全状态约束 非线性切换系统 神经网络状态观测器 机械臂轨迹控制 dynamic surface control full state constrains nonlinear switching system neural network state observer manipulator trajectory control
  • 相关文献

参考文献5

二级参考文献35

  • 1ISIDORI V. Nonlinear Control Systems [M]. New York: Springer- Verlag, 1989. 被引量:1
  • 2KRST1C M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlin- ear and Adaptive Control Design [M]. New York: John Wiley & Sons, 1995. 被引量:1
  • 3FARRELL J A, POLYCARPOU M M. Adaptive Approximation Based Control: Unifying Neural, Fuzzy, and Traditional Adaptive Approximation Approaches [MI. New Jersey: Wiley, 2006. 被引量:1
  • 4FERRARA A, GIACOMINI L. Control of a class of mechanical sys- tems with uncertainties via a constructive adaptive/second order VSC approach [J]. Journal of Dynamic Systems, Measurement, and Con- trol, 2000, 122(1): 33 - 39. 被引量:1
  • 5GE S S, HANG C C, ZHANG T. Nonlinear adaptive control using neural networks and its application to CSTR systems [J]. Journal of Process Control, 1998, 9(4): 313 - 323. 被引量:1
  • 6HUNT L R, MEYER G. Stable inversion for nonlinear systems [J]. Automatica, 1997, 33(8): 1549 - 1554. 被引量:1
  • 7KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Sys- tematic design of adaptive controllers for feedback linearizable sys- tems [J]. 1EEE Transactions on Automatic Control, 1991, 36(11): 1241 - 1253. 被引量:1
  • 8SETO D, ANNASWAMY A M, BAILLIEUL J. Adaptive control of nonlinear systems with a triangular structure [J]. IEEE Transactions on Automatic Control, 1994, 39(7): 1411 - 1428. 被引量:1
  • 9LIN W, QIAN C. Adding one power integrator: a tool for global sta- bilization of high-order lower-triangular systems [J]. Systems & Con- trol Letters, 2000, 39(5): 339 - 351. 被引量:1
  • 10WANG D, HUANG J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form [J]. Automatica, 2002, 38(8): 1365 - 1372. 被引量:1

共引文献31

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部