期刊文献+

改进YOLOv5s遥感图像识别算法研究 被引量:4

Research on improved YOLOv5s remote sensing image recognition algorithm
下载PDF
导出
摘要 针对遥感图像小目标检测精度不高、目标密集不易检测等问题,提出了一种改进YOLOv5s的遥感图像检测算法.在数据增强模块中通过增加垂直旋转方法解决了图像角度不同造成差异的问题;通过在YOLOv5s模型的Backbone模块中引入注意力机制使模型网络更加关注重点信息,以提高目标检测的精度.该算法在TGRS-HRRSD-Dataset数据集上进行实验,召回率达到99.8%,map@0.5达到98.8%,精确率达到75.6%,各项指标有明显提高. Aiming at the problems of low detection accuracy of small targets in remote sensing images and difficult detection of dense targets,an improved YOLOv5s remote sensing image detection algorithm was proposed.In the data enhancement module,the vertical rotation method was added to solve the difference caused by different image angles.The attention mechanism was introduced into the Backbone module of YOLOv5s model to make the model pay more attention to key information,so as to improve the accuracy of object detection.The algorithm was tested on the TGRS-HRRSD-Dataset.The recall rate reached 99.8%,map@0.5 reached 98.8%,and the accuracy rate reached 75.6%.All indexes were improved significantly.
作者 董延华 李佳澳 DONG Yan-Hua;LI Jia-ao(College of Mathematics and Computer Science,Jilin Normal University,Siping 136000,China)
出处 《吉林师范大学学报(自然科学版)》 2023年第2期117-123,共7页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(61773009) 中国高校产学研创新基金新一代信息技术创新项目(2020lTA05017)。
关键词 遥感图像 注意力机制 深度学习 YOLOv5s 垂直旋转 remote sensing image attention mechanism deep learning YOLOv5s vertical rotation
  • 相关文献

参考文献8

二级参考文献47

共引文献813

同被引文献23

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部