摘要
BACKGROUND Early identification of severe/critical coronavirus disease 2019(COVID-19)is crucial for timely treatment and intervention.Chest computed tomography(CT)score has been shown to be a significant factor in the diagnosis and treatment of pneumonia,however,there is currently a lack of effective early warning systems for severe/critical COVID-19 based on dynamic CT evolution.AIM To develop a severe/critical COVID-19 prediction model using a combination of imaging scores,clinical features,and biomarker levels.METHODS This study used an improved scoring system to extract and describe the chest CT characteristics of COVID-19 patients.The study also took into consideration the general clinical indicators such as dyspnea,oxygen saturation,alternative lengthening of telomeres(ALT),and androgen suppression treatment(AST),which are commonly associated with severe/critical COVID-19 cases.The study employed lasso regression to evaluate and rank the significance of different disease characteristics.RESULTS The results showed that blood oxygen saturation,ALT,IL-6/IL-10,combined score,ground glass opacity score,age,crazy paving mode score,qsofa,AST,and overall lung involvement score were key factors in predicting severe/critical COVID-19 cases.The study established a COVID-19 severe/critical early warning system using various machine learning algorithms,including XGBClassifier,Logistic Regression,MLPClassifier,RandomForestClassifier,and AdaBoost Classifier.The study concluded that the prediction model based on the improved CT score and machine learning algorithms is a feasible method for early detection of severe/critical COVID-19 evolution.CONCLUSION The findings of this study suggest that a prediction model based on improved CT scores and machine learning algorithms is effective in detecting the early warning signals of severe/critical COVID-19.
基金
Supported by National Natural Science Foundation of China,No.81900641
the Research Funding of Peking University,BMU2021MX020 and BMU2022MX008。