摘要
Two-dimensional metal carbide or nitride materials(MXenes)are widely used in electromagnetic wave absorption because of their unique structure.Herein,a novel composite preparation strategy has been proposed to design dendritic nanofibers based on the electrostatic spinning methods.The multifunctional MXene nanosheets are used as the dendritic matrix,and magnetic nanoparticles are embedded in the nanosheets as magnetic loss units.Multidimensional nanocomposites have interlaced carbon fiber networks,large-scale magnetically coupled networks,and a lot of multi-heterojunction interface structures,which endow the composites with extraordinary conduction loss,magnetic loss,and polarization loss capabilities,respectively.The impedance matching and loss mechanisms of the composites are improved by optimizing the synergistic relationship between the components and building a suitable structure.The optimum reflection loss(RL)of−54.1 dB is achieved at 2.7 mm and a wide effective absorption bandwidth(EAB,RL below−10 dB)of 7.76 GHz is obtained at a small thickness of 2.1 mm for the nanocomposites.The distinctive microstructures of the nanofibrous membranes give rise to their flexibility,waterproof,and electromagnetic wave absorption performance and endow the nanofibrous membranes potential to be utilized as lightweight,efficient electromagnetic wave protective fabric in harsh environment.
基金
supported by the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)
Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)
the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).