期刊文献+

一种传感器网络目标跟踪扩展卡尔曼滤波算法研究

Research on a Extended Kalman Filtering Algorithm for Target Tracking in Sensor Networks
下载PDF
导出
摘要 针对基于传感器能量估计的目标跟踪问题,本文通过扩展卡尔曼滤波器(EKF)来最小化估计误差,在目标跟踪优化问题中引入具有稀疏特性惩罚函数,得到稀疏卡尔曼增益矩阵,利用引入项惩罚与活动传感器数量相对应的卡尔曼增益矩阵中的非零列向量,由此只需少数传感器将测量数据传送到数据融合中心,从而节省多数传感器能量。分析结果表明,相对于要求所有传感器传输信号到数据融合中心的标准扩展卡尔曼滤波器,采用具有稀疏卡尔曼增益矩阵的扩展卡尔曼滤波器可以实现与前者非常相近的跟踪性能。 It is studied the problem of target tracking based on energy estimatings of sensors.The estimation error is minimized by using an Extended Kalman Filter(EKF).As the solution to an optimization problem in which a sparse penalty function is added to the objective,the sparse Kalman gain matrix is acquired.The added term penalizes the number of nonzero columns of the Kalman gain matrix,which corresponds to the number of active sensors.By using the Kalman gain matrix,only a few sensors send their measurements to the data fusion center,consequently saving energy of most sensor.Analysis results show that an EKF with a sparse Kalman gain matrix can achieve tracking performance that is very close to that of the classical EKF,where all sensors transmit to the fusion center.
作者 沈颖 黎泽伦 SHEN Ying;LI Zelun(Department ofMechatronics Engineering,Chongqing University of Science and Technology,Chongqing 400042,China)
出处 《智能物联技术》 2022年第6期1-3,22,共4页 Technology of Io T& AI
基金 重庆市自然科学基金资助项目(cstc2018jcyjAX0291)。
关键词 传感器网络 目标跟踪 卡尔曼滤波器 优化 sensor networks target tracking Kalman filter optimization
  • 相关文献

参考文献10

二级参考文献75

  • 1YAO Kung.Sensor Networking: Concepts, Applications, and Challenges[J].自动化学报,2006,32(6):839-845. 被引量:8
  • 2宋超凡,董慧颖.基于传感器网络的分段线性拟合跟踪算法研究[J].沈阳理工大学学报,2007,26(2):20-23. 被引量:5
  • 3季莹,张三同.基于粒子滤波的无线传感器网络目标跟踪[J].中国科技信息,2007(21):260-262. 被引量:3
  • 4AHMED N, RUTYEN M, BESSELL T, et al. Detection and tracking using particle-filter-based wireless sensor networks[ J]. IEEE Trans- actions on Mobile Computing, 2010, 9(9):1332 -1345. 被引量:1
  • 5LIN H Q, SO H C, CHAN F K W, et al. Distributed particle filter for target tracking in sensor networks[ J]. Progress in Electromaget- ics Research C, 2009, 11:171 -182. 被引量:1
  • 6WANG J, GAO Q H, WANG H Y, et al. Robust tracking algorithm for wireless sensor networks based on improved particle filter[ J]. Wireless Communications and Mobile Computing, 2012, 12 (10) : 891 - 900. 被引量:1
  • 7GAO Q H, WANG J, J]N M L, et al. Target tracking by lightweight blind particle filter in wireless sensor networks[ J/OL]. Wireless Communications and Mobile Computing, (2011) [ 2012 - 10 - 01 ]. http : / / onlinelibrary, wiley, corrr/doi/10, 1002/wcm. 1245/fu11. 被引量:1
  • 8J]NG W, LIU D, SONG C H, et al. ADPF algorithm for target tracking in WSN[ J]. Communication and Network, 2010, 2(1) : 50 -53. 被引量:1
  • 9AMUTHA B, PONNAVAIKKO M. Energy efficient hidden Markov model based target tracking mechanism in wireless sensor networks [ J]. Journal of Computer Science, 2009, 5(12) : 1082 - 1090. 被引量:1
  • 10ONG L-L, BAILEY T, DURRANT-WHYTE H. Decentralised particle filtering for multiple target tracking in wireless sensor networks[ C]// Proceedings of the 2008 llth International Conference on Information Fu- sion. Piscataway, NJ: IEEE Press, 2008:1-8. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部