摘要
为研究诱发局部滚动接触疲劳的钢轨硌伤现象,需精确模拟其应力应变场。基于显式有限元法建立钢轨动态硌伤有限元时域分析模型,考虑车轮滚滑、真实接触几何、率相关弹塑性本构等因素,轮-轨-异物间瞬态接触采用基于罚函数的“面-面”接触算法求解。针对摩擦系数为0.3,车轮运行速度为300 km/h,直径4 mm的刚性球形异物造成的硌伤进行模拟。结果表明:模型能捕捉到异物在硌伤过程中的复杂空间运动轨迹,以及连续体振动造成的应力波动;硌伤几何、残余应力、应变场具有明显的空间非对称性;车速从100 km/h增加至350 km/h,硌伤坑变浅,表层残余应力、等效塑性应变在200 km/h时出现极值;摩擦系数由0.5降至0.1,硌伤截面形状、残余应力应变非对称化加剧。
To study the rail indentation which induces local rolling contact fatigue,accurate simulation of its stress-strain field is required.A finite element model for rail indenting process in time domain was developed based on explicit finite element method,considering wheel rolling-slipping,real contact geometry and rate-dependent elastoplastic constitution.The transient contact among the wheel,the rail and the intruding body was solved by the“surface-to-surface”contact algorithm based on penalty function.A rail indenting process caused by rigid spherical intruding body with a diameter of 4 mm,a friction coefficient of 0.3,and a wheel speed of 300 km/h was simulated.The results show that the model can capture the complex spatial displacement of the intruding body and the stress fluctuation caused by the vibration of the continuum.The indentation geometry,residual stress and strain fields show significant spatial asymmetry.The rail indentation becomes shallower when the vehicle speed increases from 100 km/h to 350 km/h,while the residual stress and equivalent plastic strain in the surface reach the maximum value at 200 km/h.When the friction coefficient decreases from 0.5 to 0.1,the asymmetry of the cross-sectional indentation shape,residual stress and strain becomes more significant.
作者
罗易飞
周韶博
赵鑫
周志军
范伟
温泽峰
LUO Yifei;ZHOU Shaobo;ZHAO Xin;ZHOU Zhijun;FAN Wei;WEN Zefeng(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China;Metals&Chemistry Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2023年第4期102-110,共9页
Journal of the China Railway Society
基金
国家自然科学基金(51675444)
四川省国际科技创新合作/港澳台科技创新合作项目(2021YFH0006)
2019年度牵引动力国家重点实验室自主研究课题(2019TPL-T17)
中国铁道科学研究院集团有限公司科研项目(2019SJ08)。