摘要
Among existing approaches to holonomic quantum computing,the adiabatic holonomic quantum gates(HQGs)suffer errors due to decoherence,while the non-adiabatic HQGs either require additional Hilbert spaces or are difficult to scale.Here,we report a systematic,scalable approach based on dynamical invariants to realize HQGs without using additional Hilbert spaces.While presenting the theoretical framework of our approach,we design and experimentally evaluate single-qubit and two-qubits HQGs for the nuclear magnetic resonance system.The single-qubit gates acquire average fidelity 0.9972 by randomized benchmarking,and the controlled-NOT gate acquires fidelity 0.9782 by quantum process tomography.Our approach is also platform-independent,and thus may open a way to large-scale holonomic quantum computation.