摘要
不稳定斜坡地表形变预测对于滑坡灾害防治和预警具有重要意义。现有监测手段覆盖范围小、成本高,相关预测方法局限于单点预测,对历史数据量要求较高。针对上述问题,本文采用小基线集合成孔径雷达干涉测量(SBAS⁃InSAR)技术进行不稳定斜坡地表形变监测,设计了一种结合InSAR反演结果和门控循环单元(GRU)神经网络的不稳定斜坡地表形变预测方法。首先使用SBAS⁃InSAR技术对研究区域进行地表形变监测,然后利用获取到的时序形变反演结果,建立GRU模型进行形变规律学习,最后开展不稳定斜坡地表形变预测。试验结果表明,该方法对不稳定斜坡地表形变的预测平均绝对误差为0.678 mm,平均绝对比例误差为2.7%,相比于传统的支持向量回归(SVR)模型,预测效果提升超过30%,工程应用潜力较大。
The prediction of surface deformation of unstable slope is crucial to landslide disaster prevention and early warning.The existing monitoring methods have small coverage and high cost.The relevant prediction methods are limited to single point prediction and have high requirements for the amount of historical data.To solve the above problems,this paper uses Small Base line Subset InSAR(SBAS⁃InSAR)technology to monitor the surface deformation of unstable slope,and designs a method for predicting the surface deformation of unstable slope based on the inversion results of InSAR and Gated Recurrent Unit(GRU)neural network.Firstly,the SBAS⁃InSAR technology is used to monitor the surface deformation in the study area,then the obtained time series deformation inversion results are used to establish the GRU model to study the deformation law,and finally carry out the surface deformation prediction of unstable slope.The experimental results show that the mean absolute error of this method for predicting the surface deformation of unstable slope is 0.678 mm,and the mean absolute error percentage is 2.7%.Compared with the traditional support vector regression(SVR)model,the prediction effect is improved by more than 30%,and the engineering application potential is great.
作者
潘建平
蔡卓言
赵瑞淇
付占宝
袁雨馨
PAN Jianping;CAI Zhuoyan;ZHAO Ruiqi;FU Zhanbao;YUAN Yuxin(School of Smart City,Chongqing Jiaotong University,Chongqing 400074,China)
出处
《测绘通报》
CSCD
北大核心
2023年第3期33-38,共6页
Bulletin of Surveying and Mapping
基金
贵州省地矿局2019年局管科研项目(黔地矿科合201909)
中铁隧道局集团2021年度科技创新计划(隧研合2021⁃16)
中铁隧道局集团2022年度科技创新计划(隧研合2022⁃14)
重庆交通大学研究生科研创新项目(CYS22437)。