摘要
The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for new concepts of supramolecular crystals with nanometer in sizes,which is about thousand times larger in volumes than those of normal crystals,but also practically important to provide construction principles of metamaterials which are artificially structured materials for controlling and manipulating light,sound,and other physical behaviors.These systems have fast assembly kinetics and convenient processing procedures,making them ideal for large-scale superlattice production.In this perspective,we focus on recent developments in the construction of complex spherical packing superlattices using homogenous soft self-assemblies.We discuss the general mechanism of those formations of supramolecular motifs and provide an overview of the spherical packing superlattices self-assembled by homogenous soft matters based on different volume asymmetry.Additionally,we outline the potentials of utilizing this approach in constructing novel superlattices as well as its future challenges.
基金
financially supported by the Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(No.2019B121203003)
the Recruitment Program of Guangdong(No.2016ZT06C322)
Major Program of National Natural Science Foundation of China(No.51890871)。