期刊文献+

基于感兴趣区域池化的SAR图像目标检测算法

SAR image target detection algorithm based on the pooling region of interest
下载PDF
导出
摘要 针对复杂场景下合成孔径雷达(synthetic aperture radar,SAR)图像目标检测的鲁棒性差和准确性低等问题,提出一种基于感兴趣区域池化的方法进行SAR图像目标检测。在YOLOv3模型中,引入可变形卷积,加入池化层,通过图像增强的方式对感兴趣区域的目标进行特征选择;通过增加全连接层,生成每个位置的偏移量进行扩张,在偏移量中增加权值;在FPN部分增加DropBlock模块;改进YOLOV3的训练策略方法,采用平滑地调整学习率和增量的方式进行训练,提升模型对SAR图像感兴趣目标的检测准确率。在SAR图像上进行验证,精度可以达到98.2%,验证了模型的有效性。 Aiming at the problems of the poor robustness and accuracy of the synthetic aperture radar(SAR)image target detection in complex scenes,a method based on the pooling of regions of interest for SAR image target detection was proposed.In YOLOv3 model,deformable convolution was introduced,pooling layer was added,and features of targets in regions of interest were selected through image enhancement;by adding the full connection layer,the offset of each position was generated for expansion,and the weight value was added to the offset;adding DropBlock module in FPN;the training strategy and method of YOLOV3 were improved.The training was carried out in a smooth and incremental way to adjust the learning rate,so as to improve the detection accuracy of the model for the target of interest in SAR images.The accuracy of SAR image is 98.2%,which proves the validity of the model.
作者 郭瑞香 GUO Ruixiang(Information Construction and Management Office,Minnan Normal University,Zhangzhou 363000,China)
出处 《邵阳学院学报(自然科学版)》 2023年第2期29-36,共8页 Journal of Shaoyang University:Natural Science Edition
基金 福建省高校教育信息化科研课题(FJGX22005)。
关键词 感兴趣区域 SAR图像目标检测 合成孔径雷达 深度学习 region of interests SAR image target detection synthetic aperture radar deep learning
  • 相关文献

参考文献13

二级参考文献40

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部