期刊文献+

无监督学习的车辆重识别方法研究综述 被引量:4

Review of Research on Vehicle Re-identification Methods with Unsupervised Learning
下载PDF
导出
摘要 车辆重识别作为智能交通系统的关键技术之一,旨在从不同监控场景下识别同一车辆,对构建平安智慧城市起着重要作用。随着计算机视觉技术的不断发展,使用监督学习的重识别方法存在训练过程对人工标注依赖强、场景泛化能力弱的问题,因此无监督学习的车辆重识别逐渐成为近年来研究的重点。首先,介绍了当前主流的车辆重识别数据集以及常用的模型评价指标。然后,系统梳理了近几年基于无监督学习的车辆重识别方法,根据目前的研究思路将这些方法归纳为生成对抗网络和聚类算法两大类;从域偏差、跨视域偏差以及数据样本信息不足的问题出发,将前者进一步分为风格转换、多视角生成和数据增强三类;又针对标签的问题,将后者分为伪标签的无监督域适应和无需标签信息两类;以解决问题为着手点,总结出每类方法的基本原理、优缺点以及在主流数据集上的性能结果。最后,讨论分析了目前无监督学习的车辆重识别所面临的挑战,并对该研究方向的未来工作进行展望。 As one of the key technologies of intelligent transportation systems,vehicle re-identification(Re-ID)aims to retrieve the same vehicle from different monitoring scenes and plays an important role in building a safe and smart city.With the continuous development of computer vision,the Re-ID method of using supervised learning suffers from the problems of strong reliance on manual annotation in the training process and weak scene generalization ability,so unsupervised learning of vehicle Re-ID gradually becomes the focus of research in recent years.Firstly,the present mainstream vehicle Re-ID datasets and the commonly used model evaluation metrics are introduced.Then,latest unsupervised learning-based vehicle Re-ID methods are grouped into two categories:generative adversarial networks and clustering algorithms according to the current research ideas.Starting from the problems of domain deviation,cross-view deviation and insufficient information of data samples,the former is further divided into three categories of style transfer,multi-view generation,and data augmentation.For the labeling problem,the latter can be divided into two categories of pseudo-labeled unsupervised domain adaptation and no label information required.With problem solving as the starting point,the fundamentals,advantages and disadvantages,and performance results of each type of method on mainstream datasets are summarized.Finally,the challenges faced by the current unsupervised learning for vehicle Re-ID are analyzed,and the future work in this research direction is prospected.
作者 徐岩 郭晓燕 荣磊磊 XU Yan;GUO Xiaoyan;RONG Leilei(College of Electronic and Information Engineering,Shandong University of Science&Technology,Qingdao,Shandong 266590,China;Shengrui Transmission Corporation Limited,Weifang,Shandong 261000,China)
出处 《计算机科学与探索》 CSCD 北大核心 2023年第5期1017-1037,共21页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金(11547037,11604181) 山东省研究生教育质量课程项目(SDYKC19083) 山东省研究生教育联合培养基地项目(SDYJD18027)。
关键词 智能交通 车辆重识别 无监督学习 生成对抗网络 聚类 intelligent transportation vehicle re-identification unsupervised learning generative adversarial networks clustering
  • 相关文献

参考文献7

二级参考文献147

  • 1苑玮琦,穆长江,李德胜.一种基于汉字结构特征的车牌照字符分割方法[J].仪器仪表学报,2003,24(z2):472-474. 被引量:11
  • 2潘梅森,荣秋生.基于SOFM神经网络的图像融合二值化方法[J].光学精密工程,2007,15(3):401-406. 被引量:19
  • 3李建林,俞建成,孙胜利.基于梯度金字塔图像融合的研究[J].科学技术与工程,2007,7(22):5818-5822. 被引量:13
  • 4Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51-59. 被引量:1
  • 5Pietik/iinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions. Pattern Recogni- tion, 2000, 33(1): 43-52. 被引量:1
  • 6Ojala T, Valkealahti K, Oja E, Pietikginen M. Texture dis- crimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 2001, 34(3): 727-739. 被引量:1
  • 7Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 被引量:1
  • 8Pietikainen M, Hadid A, Zhao G Y, Ahonen T. Com- puter Vision Using Local Binary Patterns. Berlin: Springer- Verlag, 2011. 193-202. 被引量:1
  • 9Hafiane A, Seetharaman G, Zavidovique B. Median bi- nary pattern for textures classification. In: Proceedings of the 2007.International Conference on Image Analysis and Recognition. Montreal, Canada: Springer, 2007. 387-398. 被引量:1
  • 10Guo Z H, Zhang L, Zhang D, Zhang S. Rotation invariant texture classification using adaptive LBP with directional statistical features. In: Proceedings of the 17th IEEE In- ternational Conference on Image Processing. Hong Kong, China: IEEE, 2010. 285-288. 被引量:1

共引文献157

同被引文献38

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部