摘要
壁画破损区域预测是壁画虚拟修复工作的重要环节,针对现有方法在预测云南少数民族壁画破损区域时容易出现破损区域预测不全、对纹理复杂区域的破损边界预测不准确等问题,提出了一种基于U-Net改进的Dual Dense U-Net分割模型,通过增强破损区域位置特征和纹理特征,获取更多的判别信息,以提高破损掩膜预测的准确度。为使模型能更有效地学习壁画特征,建立了一个包含5 000张云南少数民族壁画图像的分割数据集。Dual Dense U-Net模型利用融合模块去对壁画图像进行多尺度融合,减少壁画图像在前馈过程中的局部纹理信息和空间位置信息损失。首先,利用U-Net结构对输入的壁画图像进行信息提取,融合模块有多个深度可分离卷积,能够提高融合模块效率以及分割精度;其次,融合模块连接两个U-Net,进一步加强浅层特征与深层特征间的联系。实验结果表明,该模型在IoU与Dice评价指标较UNet++提高了3个百分点,模型预测得到的破损区域能显著改善壁画修复网络的修复效果,验证了该模型在壁画破损区域预测领域的有效性。
The prediction of damaged areas of murals constitutes an important part of the virtual restoration of murals.However,current methods are prone to problems such as incomplete prediction of damaged areas and inaccurate prediction of damaged boundaries of the complex texture area in the case of Yunnan Minority Murals.To address these challenges,an improved Dual Dense U-Net segmentation model based on U-Net was proposed.This method enhanced the location and texture features of damaged regions,resulting in more discriminative information and the improved accuracy of damaged mask prediction.To enable the model to learn mural features more effectively,a segmentation dataset containing 5,000 images of Yunnan Minority Murals was established.The Dual Dense U-Net model employed a fusion module to perform a multi-scale fusion of mural images,mitigating the loss of local texture information and spatial position information in the feedforward process of mural images.First,the U-Net structure was used to extract information from the input mural image.The fusion module was comprised of multiple depthwise separable convolutions,which could improve the efficiency and segmentation accuracy of the fusion module.Secondly,the fusion module connected two U-Nets to further strengthen the connection between shallow features and deep features.The experimental results revealed that the IoU and Dice evaluation indicators of the model were improved by 3 percentage points compared with UNet++,and that the damaged areas predicted by the model could significantly improve the restoration effect of the murals restoration network.The proposed model was thus proven to be effective in predicting damaged areas of murals.
作者
罗启明
吴昊
夏信
袁国武
LUO Qi-ming;WU Hao;XIA Xin;YUAN Guo-wu(School of Information Science and Engineering,Yunnan University,Kunming Yunnan 650500,China)
出处
《图学学报》
CSCD
北大核心
2023年第2期304-312,共9页
Journal of Graphics
基金
国家自然科学基金项目(62061049)
云南省应用基础研究计划重点项目(202001BB050032)
云南省应用基础研究计划面上项目(2018FB100)。
关键词
壁画分割
病害提取
深度可分离卷积
多尺度信息融合
深度学习
mural segmentation
disease extraction
depthwise separable convolution
multi-scale information fusion
deep learning