期刊文献+

Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries

原文传递
导出
摘要 Magnesium-ion batteries(MIBs)are promising alternatives to lithium-ion batteries due to their safety and high theoretical specific capacity,and the abundance of magnesium reserves.However,their anodes and electro-lytes severely restrict the development of MIBs,so alloy-type anodes provide an effective strategy to circum-vent the surface passivation issue encountered with Mg metal in conventional electrolytes.Theoretically,a germanium anode can deliver a high specific capacity of 1476 mAh g?1,but hitherto,no experimental reports have described Ge in MIBs.Herein,we experimentally verified that Ge could reversibly react with Mg 2þions through the design of dual-phase Ge–Bi film electrodes fabricated by magnetron co-sputtering.Notably,a Ge 57 Bi 43 electrode delivered a high specific capacity of 847.5 mAh g?1,owing to the joint alloying reactions of Ge and Bi with Mg,which was much higher than the specific capacity of Bi(around 385 mAh g?1).Moreover,the Ge–Bi anode showed excellent rate performance,good cycling stability,and superior compatibility with conventional electrolytes such as Mg(TFSI)2.More importantly,the Mg storage mechanism of the Ge–Bi anode was unveiled by operando X-ray diffraction,and density functional theory calculations rationalized that the introduction of Bi to form Ge–Bi evidently decreased the defect formation energy and effectively boosted the electrochemical reactivity of Ge with Mg.
出处 《eScience》 2023年第1期45-52,共8页 电化学与能源科学(英文)
基金 The authors acknowledge the support by National Natural Science Foundation of China(51871133) Taishan Scholar Foundation of Shan-dong Province,the Key Research and Development Program of Shandong Province(2021ZLGX01) the program of Jinan Science and Tech-nology Bureau(2019GXRC001).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部