摘要
针对无人机结构故障难以发现的问题,提出了基于振动信号与卷积神经网络的无人机结构故障诊断方法。分别在无人机正常状态下和故障状态下进行振动信号采集,搭建了含有三层卷积层和三层池化层的卷积神经网络,对采集的无人机振动数据信号进行故障分类,利用实验室无人机测试平台进行验证,该方法准确率能够达到97.5%,高于传统的机器学习方法,可以用于无人机结构故障诊断。
Due to the difficulty in detecting structural faults of UAV,a structural fault diagnosis method for UAV is proposed based on vibration signal and deep learning.The vibration signals are collected under the normal and fault conditions of the UAV respectively.A convolutional neural network with three convolution layers and three layers of pooling is proposed.The collected UAV vibration data signals are used for fault classification.The laboratory UAV test platform is used to verify with the accuracy rate can reach 97.5%,which is higher than the traditional machine learning method,and can be used to diagnose the structural fault of the UAV.
作者
马玉猛
谢振伟
陈蒙蒙
常国栋
MA Yu-meng;XIE Zhen-wei;CHEN Meng-meng;CHANG Guo-dong(School of Aeronautical Engineering,Binzhou University;Shandong Engineering Research Center of Aeronautical Materials and Devices,Binzhou University;Keylaboratory of Aeronautical Optoelectronic Materials and Devices,Binzhou University;Shandong Blue Standard Testing Technology Co.,Ltd.,Binzhou 256603,China)
出处
《滨州学院学报》
2023年第2期24-28,共5页
Journal of Binzhou University
基金
滨州学院实验技术研究项目(BZXYSYXM201803)
滨州学院校企共建课程项目(无人机创新指导课程)。
关键词
无人机
数据采集
卷积神经网络
故障诊断
UAV
data collection
convolutional neural network
fault diagnosis