期刊文献+

基于自适应快速S变换和XGBoost的心电信号精确快速分类方法

Accurate and Fast ElectroCardioGram Classification Method Based on Adaptive Fast S-Transform and XGBoost
下载PDF
导出
摘要 针对心电信号(ECG)传统分类方法效率较低的问题,该文提出一种基于自适应快速S变换(AFST)和XGBoost的心电信号精确快速分类方法。该方法首先通过快速定位算法确定心电信号特征频率点,再根据特征频率点自适应调节S变换窗宽因子,增强S变换的时频分辨率的同时避免迭代计算,大大减少运行时间。其次,基于自适应快速S变换的时频矩阵提取12个特征量来表征5种心电信号的特征信息,特征向量维数低,识别能力强。最后,利用XGBoost算法对特征向量进行识别。MIT-BIH心律失常数据库和患者实测数据验证表明,该方法显著地缩短了分类时间,对5种心电信号的分类准确率分别为99.59%和97.32%,适用于实际检测系统中心律失常疾病的快速诊断。 Considering the low efficiency of traditional ElectroCardioGram(ECG)classification methods,an accurate and fast ElectroCardioGram classification method based on Adaptive Fast S-Transform(AFST)and XGBoost is proposed.Firstly,the main feature points of the ECG signals are determined through a fast positioning algorithm,and then the S-Transform window width factor is adjusted adaptively according to the main feature points to enhance the time-frequency resolution of the S-transform while avoiding iterative calculation and reducing the running time greatly;Secondly,based on the time-frequency matrix of AFST,12 eigenvalues are extracted to represent the characteristic information of 5 kinds of ECG signals,with low eigenvector dimension and strong recognition ability.Finally,XGBoost is used to identify the eigenvectors.The experimental studies based on the MIT-BIH arrhythmia database and the verification of patient measurement data show that,with the proposed method,the classification time of ECG signals is significantly shortened and classification accuracy of 99.59%,97.32%is obtained respectively,which is suitable for the rapid diagnosis of abnormal diseases in the center rate of the actual detection system.
作者 袁莉芬 李松 尹柏强 李兵 佐磊 YUAN Lifen;LI Song;YIN Baiqiang;LI Bing;ZUO Lei(School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2023年第4期1464-1474,共11页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61971175) 中央高校基本科研业务费(JZ2019YYPY0025)。
关键词 心电信号 心律失常 S变换 自适应快速S变换 XGBoost算法 ElectroCardioGram(ECG) Arrhythmias S-Transform(ST) Adaptive Fast S-Transform(AFST) XGBoost algorithm
  • 相关文献

参考文献9

二级参考文献58

  • 1吕干云,冯华君,汪晓东,张长江.基于S变换和人工神经网络的电能质量扰动识别[J].仪器仪表学报,2006,27(z3):2281-2283. 被引量:6
  • 2杨洪耕,刘守亮,肖先勇.利用S变换时频等值线图与幅值包络向量实现电压凹陷的分类[J].电工技术学报,2006,21(8):75-79. 被引量:24
  • 3李桥,俞梦孙.重症监护病人心电导联信号质量评估[J].山东大学学报(医学版),2007,45(9):868-872. 被引量:7
  • 4Pillay P, Bhattacharjee A. Application of wavelets to model short-term power system disturbances[J]. IEEE Trans. on Power System, 1996, 11(4): 2031-2037. 被引量:1
  • 5Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: The S-transform[J]. IEEE Trans. on Signal Process, 1996, 44(4): 998-1001. 被引量:1
  • 6Chilukuri M V , Dash P K . Multiresolution S-transform-based fuzzy recognition system for power quality events[J]. IEEE Trans. on laower Delivery, 2004, 19(1): 323-331. 被引量:1
  • 7Santoso S, Powers E J, Grady W M, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier-part 1: Theoretical foundation[J]. IEEE Trans. on Power Delivery, 2000, 15(1): 222-228. 被引量:1
  • 8Mishra S, Bhende C N, Panigrahi B K. Detection and classification of power quality disturbances using S-transform and probabilistic neural network[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 280-287. 被引量:1
  • 9Milosevic M, Valter Mcconville K M, Sejdic E. Visualization of trtmk muscle synergies during sitting perturbations using self-organizing maps(SOM)[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2516-2523. 被引量:1
  • 10He S F, Li K C, Zhang M. A real-time power quality disturbances classification using hybrid method based on S-transform and dynamics[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(9): 2465-2475. 被引量:1

共引文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部