摘要
Benefitting from low cost and simple synthesis,simple structured non-fused ring acceptors(NFRAs)and polymer donors are crucial for the application of organic solar cells(OSCs).Herein,two isomerized NFRAs,namely 4T-FCl FCl and 4T-2F2Cl,are designed with end-group engineering,which modulates the electrostatic potential distributions and crystallinity of acceptors,and accordingly,the A/A and D/A intermolecular interactions.The OSC based on 4T-2F2Cl with strong D/A interactions shows a record-high efficiency of 16.31%in blending with a low-cost polymer donor PTQ10,which shapes obviously improved bulkheterojunction(BHJ)networks blade-coated by non-halogenated solvent o-xylene,and thus significantly diminishes nonradiative recombination loss.A higher industrial figure of merit(i-FOM)of 0.46 for PTQ10:4T-2F2Cl in comparison with PTQ10:4T-FCl FCl(i-FOM=0.29)is demonstrated owing to its superior device efficiency and operational stability.Note that the i-FOM of PTQ10:4T-2F2Cl is the highest value for OSCs reported so far.This work deepens the synergistic effect of the A/A and D/A interactions on achieving desired bulk heterojunction morphology and demonstrates a printable photovoltaic system for low-cost,high-efficiency,stable,and eco-friendly OSCs.
基金
supported by the National Natural Science Foundation of China(52061135206,22279094)
the Fundamental Research Funds for the Central Universities。