期刊文献+

芝麻过敏原的生物信息学分析 被引量:2

Bioinformatics Analysis of Sesame Allergens
下载PDF
导出
摘要 通过DNAstar和IEDB等生物信息学软件对7种芝麻过敏原的生物学信息进行分析,采用多种方案对芝麻过敏原的抗原指数、亲水性、表面可及性、柔韧性等参数及其二级结构进行预测,并对预测的抗原表位综合分析.利用SWISS-MODEL进行同源建模并用拉氏图评价其结构稳定性.结果表明,7种芝麻过敏原蛋白均存在多个可能的抗原表位,采用同源建模的方式成功构建了芝麻过敏原蛋白的三级结构模型,拉氏图显示该模型的构象稳定.本研究为制备特异性抗体肽段和过敏原检测等提供了依据. In this study the biological information of seven sesame allergens was analyzed via bioinformatics software such as DNAstar and IEDB.The antigenic index,hydrophilicity,surface accessibility,flexibility and secondary structure of sesame allergens were predicted using(or with)various approaches(or methods).A comprehensive analysis of the predicted antigenic epitopes was performed.SWISS-MODEL was used for homology modeling and Ramachandran Plot was used to evaluate structural stability.The results showed that there were multiple possible epitopes in the seven sesame allergen proteins.The tertiary structure model of the sesame allergen protein was successfully constructed by homology modeling,and the conformational stability of the model was evaluated by Ramachandran Plot.The results could be useful for the preparation of specific antibody peptides and allergens detection.
作者 令狐晓盼 王莎莎 邱金平 陆旸 LINGHU Xiaopan;WANG Shasha;QIU Jinping;LU Yang(College of Food Science and Engineering,Tianjin University of Science&Technology,Tianjin 300457,China)
出处 《天津科技大学学报》 CAS 2023年第2期19-27,74,共10页 Journal of Tianjin University of Science & Technology
关键词 芝麻过敏原 生物信息学 DNAstar SWISS-MODEL 线性表位预测 同源建模 sesame allergens bioinformatics DNAstar SWISS-MODEL linear epitope prediction homology modelling
  • 相关文献

参考文献7

  • 1郑礼娜..虾类过敏原的活性分析及其抗原表位的研究[D].中国海洋大学,2011:
  • 2蒋彦等编著..基础生物信息学及应用[M].北京:清华大学出版社,2003:255.
  • 3黄韧 ... ..生物信息学网络资源与应用[M],2003.
  • 4黄影.隐马尔可夫模型在生物信息学中的应用[J].电子科技,2015,28(8):185-189. 被引量:4
  • 5单晓红..大豆和牛奶致敏原表位预测及加工对其抗原性和结构的影响[D].江南大学,2013:
  • 6马秀丽,张九凯,孙劲旅,李宏,黄文胜,韩建勋,葛毅强,陈颖.芝麻过敏原Ses i 3同源建模及B细胞线性抗原表位预测[J].中国食品学报,2021,21(4):9-18. 被引量:5
  • 7闫瑞..消费者食品过敏原标签的认知现状与对策研究[D].山西医科大学,2016:

二级参考文献35

  • 1Eddy S. What is a hidden Markov model [ J ]. Nature Bio- technology,2004,22(10) :1315 - 1316. 被引量:1
  • 2Duta R O. Pattern classification [M]. Beijing: China Ma- chine Press,2004. 被引量:1
  • 3Charniak E. Statistical techniques for natural language par- sing [J]. AI Magazine,1997(18) :33 -43. 被引量:1
  • 4Singh B, Kapur N, Kaur P. Speech recognition with hidden Markov model: a review [ J]. International Journal of Ad- vanced Reasearch in Computer Science and Software Engi- neering ,2012,2 ( 3 ) :401 - 403. 被引量:1
  • 5Pollastri E, Simoncelli G. Classification of melodies by com- poser with hidden Markov models [ C ]. Florence, Italy: the First International Conference on Web Delivering of Music WEDELMUSIC ' 01,2001. 被引量:1
  • 6Valeria D F, Filippo A P, Valerio P. Hidden Markov models in bioinformatics [J]. Current Bioinformatics, 2007 ( 2 ) : 49 -61. 被引量:1
  • 7Yoon B. Hidden Markov models and their applications in bio- logical sequence analysis[J].Current Genomics, 2009 (10) :402 -415. 被引量:1
  • 8Durbin R, Eddy S. Biological sequence analysis:probabilisticmodels of proteins and nucleic acids [ M 1. Cambridge, UK: Cambridge University Press, 1998. 被引量:1
  • 9Krogh A. Computational methods in molecular biology [ M ]. Amsterdam, Holland : Elsevier Press, 1998. 被引量:1
  • 10Henderson J, Salzberg S, Fasman K H. Finding genes in DNA with a hidden Markov model [ J ]. Journal of Comput Biolo- gy,1997(4) :127 - 141. 被引量:1

共引文献7

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部