期刊文献+

多变量模式分析观察慢性颈肩痛患者静息态下脑功能连接变化

Multivariate pattern analysis for evaluating resting-state brain functional connectivity changes in patients with chronic neck and shoulder pain
下载PDF
导出
摘要 目的 基于多变量模式分析(MVPA)观察慢性颈肩痛(CNSP)患者静息态下全脑功能连接改变。方法 对27例CNSP患者(CNSP组)及15名健康受试者(对照组)采集头部静息态功能MRI(rs-fMRI),对CNSP组行视觉模拟量表(VAS)评分。以偏相关法基于rs-fMRI构建脑网络,以MVPA法对CNSP及健康受试者进行分类,定位组间存在差异的功能连接,分析CNSP组上述功能连接强度与VAS评分的相关性。结果 以MVPA法区分CNSP进行分类的准确率为90.48%。组间脑功能连接强度存在差异脑区涉及默认网络、额顶网络、边缘网络及感觉运动网络等。CNSP患者右侧眶部额下回-左侧缘上回功能连接强度与VAS评分呈负相关(r=-0.496,P=0.009),左侧眶部额中回-左侧角回、左侧枕中回-左侧枕上回功能连接强度与VAS均呈正相关(r=0.398、0.461,P=0.039、0.015)。结论 CNSP患者脑网络内与疼痛感受及情绪异常相关的眶部额下回、眶部额中回、角回、枕中回及枕上回等多个脑区存在功能连接异常。 Objective To explore resting-state changes of whole brain functional connectivity in patients with chronic neck and shoulder pain(CNSP)based on multivariate pattern analysis(MVPA).Methods Resting-state head functional MRI(rs-fMRI)of 27 CNSP patients(CNSP group)and 15 healthy subjects(control group)were collected,and visual analogue scale(VAS)was performed for CNSP group.Partial correlation method based on rs-fMRI was used to construct brain networks,while MVPA method was used to classify CNSP and controls,the functional connectivity being different between groups were localized,and the correlations of the connection strength of the brain regions with differential functional connectivity and VAS scores of CNSP patients were analyzed.Results The accuracy of distinguishing CNSP and controls based on MVPA method was 90.48%.Brain regions with different functional connections strength between groups involved the default network,frontoparietal network,limbic network and sensorimotor network,etc.The functional connectivity strength of right orbital part of inferior frontal gyrus-left supramarginal gyrus in CNSP patients were negatively correlated with VAS scores(r=-0.496,P=0.009),while of left orbital part of middle frontal gyrus-left angular gyrus,left middle occipital gyrus-left superior occipital gyrus were both positively correlated with VAS scores(r=0.398,0.461;P=0.039,0.015).Conclusion CNSP patients had abnormal functional connections in multiple brain regions related to pain perception and emotional abnormalities,including the orbital part of inferior frontal gyrus,the orbital part of middle frontal gyrus,angular gyrus,middle occipital gyrus,superior occipital gyrus,etc.
作者 汪方毅 刘倩 李博 赵长江 陈怡 余成新 WANG Fangyi;LIU Qian;LI Bo;ZHAO Changjiang;CHEN Yi;YU Chengxin(Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,China Three Gorges University,Yichang 443002,China;College of Computer and Information Technology,China Three Gorges University,Yichang 443002,China;Department of Radiology,the First College of Clinical Medical Science of China Three Gorges University and Yichang Central People's Hospital,Yichang 443008,China;Department of Radiology,Wuhan Children's Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China)
出处 《中国医学影像技术》 CSCD 北大核心 2023年第4期514-519,共6页 Chinese Journal of Medical Imaging Technology
基金 湖北省教育厅科学技术研究计划(Z2019096) 湖北省水电工程智能视觉监测重点实验室开放基金(2022SDSJ06)。
关键词 脊椎病 磁共振成像 功能连接 多变量模式分析 spondylosis magnetic resonance imaging functional connectivity multivariate pattern analysis
  • 相关文献

参考文献7

二级参考文献38

  • 1张明,王渊,刘海,章士正,鱼博浪,陈燕,王微微.小脑参与痛觉调节的fMRI研究[J].中国医学影像技术,2006,22(1):27-30. 被引量:16
  • 2王美豪,祝一虹,李建策,翁旭初.运动准备和执行的全脑功能磁共振研究[J].中华医学杂志,2007,87(14):971-974. 被引量:6
  • 3Wang Jinhui, Zuo Xinian, He Yong. Graph-based network analysis of resting state functional MRi[J]. Frontiers in Sys- tems Neuroscience, 2010, 4(16) :1-14. 被引量:1
  • 4Uddin L Q, Kelly A M, Biswal B B, et al. Network homo- geneity reveals decreased integrity of default-mode network in ADHDFJ]. NeurosciMethods, 2008, 169:249 -254. 被引量:1
  • 5Ferri R, Rundo F, Bruni O, et al. Small-world network or- ganization of functional connectivity of EEG slow-wave activi- ty during sleep[J]. Clinical Neurophysiology, 2007, 118(2): 449-456. 被引量:1
  • 6Eguiluz V M, Chialvo D R, Cecchi G A, et al. Scale-free brain functional networksFJ]. Physical Review Letters,2005, 94(1) :018102. 被引量:1
  • 7Cheol E H, Sang W Y,Sang W S, et al. Cluster-based sta- tistics for brain connectivity in correlation with behavioral measures[J]. PLoS One, 2013, 8(8) :e72332. 被引量:1
  • 8Andrew Z,Alex F, Ian H H, et al. Whole-brain anatomical networks: Does the choice of nodes matter? [J]. Neuroim- age, 2010,50(3) :970-983. 被引量:1
  • 9Liang Xia, Wang Jinhui, Yan Chaogang, et al. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: A resting-state func- tionalMRI study[J]. PLoSOne, 2012,7(3):e32766. 被引量:1
  • 10. van den Heuvel M P, Stare C J, Kahn R S, et al. Efficiency of functional brain networks and intellectual performance[J]. The Journal of Neuroscience, 2009,29(23):7619-7624. 被引量:1

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部