摘要
碳系环氧导电胶在电子工业领域应用广泛,其反应动力学研究具有重要理论和应用价值。本研究采用非等温差示扫描量热法(DSC)探究其固化反应的动力学过程。利用Kissinger极值法获得了该导电胶的表观活化能为57.6 kJ/mol,并由Starink等转化率法获得该导电胶活化能随固化度的变化情况,研究发现,该导电胶的活化能随着固化度增大而增大,但平均活化能接近57.6 kJ/mol。采用Sestal-Berggren自催化模型和改进的变活化能模型对导电胶的固化过程进行模拟,结果表明,改进的变活化能模型理论计算和实验数据具有良好的一致性。在此基础上,初步探讨了动力学方程在该导电胶恒温固化过程中的应用。
Carbon based epoxy conductive adhesive is widely used in electronic industry,and the study of its reaction kinetics has important theoretical and application significance.Curing kinetics of the conductive adhesive system was studied by non-isothermal differential scanning calorimeters(DSC).According to the Kissinger method,the apparent activation energy of the curing reaction was 57.6 kJ/mol.By the Starink isoconversion method for the conductive adhesive,the changes of activation energy(E)versus conversion(α)were obtained,and it was pointed out that the activation energy of the conductive adhesive increased with the increase of the conversion,but the average activation energy was close to 57.6 kJ/mol.The Sestal-Berggren(SB)autocatalytic kinetic model and E variable autocatalytic kinetic model were used to describe the curing reaction process of the studied system.Compared with the SB autocatalytic model,the E variable autocatalytic kinetic model showed a good agreement with experimental data of the conductive adhesive.The obtained model can be used in the calculation of the curing process of the conductive adhesive and provides theoretical guidance for the application of the conductive adhesive.
作者
张进
谭璐
邢宝岩
李作鹏
赵建国
屈文山
张璐
ZHANG Jin;TAN Lu;XING Baoyan;LI Zuopeng;ZHAO Jianguo;QU Wenshan;ZHANG Lu(College of Chemistry and Chemical Engineering,Shanxi Datong University,Datong 037009,Shanxi,China;College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030000,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2023年第8期201-206,共6页
Materials Reports
基金
国家自然科学基金(52071192)
山西省科技重大专项(20181102003)
甘肃省青年科技基金(20JR5RE647)
大同市重点研发项目(2020013)。
关键词
导电胶
固化动力学
环氧树脂
等转化率法
变活化能模型
conductive adhesive
curing kinetic
epoxy resin
isoconversion method
E variable autocatalytic kinetic model